![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > extmptsuppeq | Unicode version |
Description: The support of an extended function is the same as the original. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 30-Jun-2019.) |
Ref | Expression |
---|---|
extmptsuppeq.b | |
extmptsuppeq.a | |
extmptsuppeq.z |
Ref | Expression |
---|---|
extmptsuppeq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | extmptsuppeq.a | . . . . . . . . 9 | |
2 | 1 | adantl 466 | . . . . . . . 8 |
3 | 2 | sseld 3502 | . . . . . . 7 |
4 | 3 | anim1d 564 | . . . . . 6 |
5 | eldif 3485 | . . . . . . . . . . . . 13 | |
6 | extmptsuppeq.z | . . . . . . . . . . . . . 14 | |
7 | 6 | adantll 713 | . . . . . . . . . . . . 13 |
8 | 5, 7 | sylan2br 476 | . . . . . . . . . . . 12 |
9 | 8 | expr 615 | . . . . . . . . . . 11 |
10 | elsnc2g 4059 | . . . . . . . . . . . . 13 | |
11 | elndif 3627 | . . . . . . . . . . . . 13 | |
12 | 10, 11 | syl6bir 229 | . . . . . . . . . . . 12 |
13 | 12 | ad2antrr 725 | . . . . . . . . . . 11 |
14 | 9, 13 | syld 44 | . . . . . . . . . 10 |
15 | 14 | con4d 105 | . . . . . . . . 9 |
16 | 15 | impr 619 | . . . . . . . 8 |
17 | simprr 757 | . . . . . . . 8 | |
18 | 16, 17 | jca 532 | . . . . . . 7 |
19 | 18 | ex 434 | . . . . . 6 |
20 | 4, 19 | impbid 191 | . . . . 5 |
21 | 20 | rabbidva2 3099 | . . . 4 |
22 | eqid 2457 | . . . . 5 | |
23 | extmptsuppeq.b | . . . . . . 7 | |
24 | 23, 1 | ssexd 4599 | . . . . . 6 |
25 | 24 | adantl 466 | . . . . 5 |
26 | simpl 457 | . . . . 5 | |
27 | 22, 25, 26 | mptsuppdifd 6941 | . . . 4 |
28 | eqid 2457 | . . . . 5 | |
29 | 23 | adantl 466 | . . . . 5 |
30 | 28, 29, 26 | mptsuppdifd 6941 | . . . 4 |
31 | 21, 27, 30 | 3eqtr4d 2508 | . . 3 |
32 | 31 | ex 434 | . 2 |
33 | simpr 461 | . . . . . 6 | |
34 | 33 | con3i 135 | . . . . 5 |
35 | supp0prc 6921 | . . . . 5 | |
36 | 34, 35 | syl 16 | . . . 4 |
37 | simpr 461 | . . . . . 6 | |
38 | 37 | con3i 135 | . . . . 5 |
39 | supp0prc 6921 | . . . . 5 | |
40 | 38, 39 | syl 16 | . . . 4 |
41 | 36, 40 | eqtr4d 2501 | . . 3 |
42 | 41 | a1d 25 | . 2 |
43 | 32, 42 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 e. wcel 1818
{ crab 2811 cvv 3109
\ cdif 3472 C_ wss 3475 c0 3784 { csn 4029 e. cmpt 4510
(class class class)co 6296 csupp 6918 |
This theorem is referenced by: cantnfrescl 8116 cantnfres 8117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-supp 6919 |
Copyright terms: Public domain | W3C validator |