![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > f12dfv | Unicode version |
Description: A one-to-one function with a domain with at least two different elements in terms of function values. (Contributed by Alexander van der Vekens, 2-Mar-2018.) |
Ref | Expression |
---|---|
f12dfv.a |
Ref | Expression |
---|---|
f12dfv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff14b 6178 | . 2 | |
2 | f12dfv.a | . . . . 5 | |
3 | 2 | raleqi 3058 | . . . 4 |
4 | sneq 4039 | . . . . . . . . 9 | |
5 | 4 | difeq2d 3621 | . . . . . . . 8 |
6 | fveq2 5871 | . . . . . . . . 9 | |
7 | 6 | neeq1d 2734 | . . . . . . . 8 |
8 | 5, 7 | raleqbidv 3068 | . . . . . . 7 |
9 | sneq 4039 | . . . . . . . . 9 | |
10 | 9 | difeq2d 3621 | . . . . . . . 8 |
11 | fveq2 5871 | . . . . . . . . 9 | |
12 | 11 | neeq1d 2734 | . . . . . . . 8 |
13 | 10, 12 | raleqbidv 3068 | . . . . . . 7 |
14 | 8, 13 | ralprg 4078 | . . . . . 6 |
15 | 14 | adantr 465 | . . . . 5 |
16 | 2 | difeq1i 3617 | . . . . . . . . . . 11 |
17 | difprsn1 4166 | . . . . . . . . . . 11 | |
18 | 16, 17 | syl5eq 2510 | . . . . . . . . . 10 |
19 | 18 | adantl 466 | . . . . . . . . 9 |
20 | 19 | raleqdv 3060 | . . . . . . . 8 |
21 | fveq2 5871 | . . . . . . . . . . . 12 | |
22 | 21 | neeq2d 2735 | . . . . . . . . . . 11 |
23 | 22 | ralsng 4064 | . . . . . . . . . 10 |
24 | 23 | adantl 466 | . . . . . . . . 9 |
25 | 24 | adantr 465 | . . . . . . . 8 |
26 | 20, 25 | bitrd 253 | . . . . . . 7 |
27 | 2 | difeq1i 3617 | . . . . . . . . . . 11 |
28 | difprsn2 4167 | . . . . . . . . . . 11 | |
29 | 27, 28 | syl5eq 2510 | . . . . . . . . . 10 |
30 | 29 | adantl 466 | . . . . . . . . 9 |
31 | 30 | raleqdv 3060 | . . . . . . . 8 |
32 | fveq2 5871 | . . . . . . . . . . . 12 | |
33 | 32 | neeq2d 2735 | . . . . . . . . . . 11 |
34 | 33 | ralsng 4064 | . . . . . . . . . 10 |
35 | 34 | adantr 465 | . . . . . . . . 9 |
36 | 35 | adantr 465 | . . . . . . . 8 |
37 | 31, 36 | bitrd 253 | . . . . . . 7 |
38 | 26, 37 | anbi12d 710 | . . . . . 6 |
39 | necom 2726 | . . . . . . . 8 | |
40 | 39 | biimpi 194 | . . . . . . 7 |
41 | 40 | pm4.71i 632 | . . . . . 6 |
42 | 38, 41 | syl6bbr 263 | . . . . 5 |
43 | 15, 42 | bitrd 253 | . . . 4 |
44 | 3, 43 | syl5bb 257 | . . 3 |
45 | 44 | anbi2d 703 | . 2 |
46 | 1, 45 | syl5bb 257 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 A. wral 2807 \ cdif 3472
{ csn 4029 { cpr 4031 --> wf 5589
-1-1-> wf1 5590
` cfv 5593 |
This theorem is referenced by: usgra2wlkspthlem1 24619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fv 5601 |
Copyright terms: Public domain | W3C validator |