MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1dm Unicode version

Theorem f1dm 5790
Description: The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1dm

Proof of Theorem f1dm
StepHypRef Expression
1 f1fn 5787 . 2
2 fndm 5685 . 2
31, 2syl 16 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1395  domcdm 5004  Fnwfn 5588  -1-1->wf1 5590
This theorem is referenced by:  fun11iun  6760  fnwelem  6915  tposf12  6999  fodomr  7688  domssex  7698  acndom  8453  acndom2  8456  ackbij1b  8640  fin1a2lem6  8806  cnt0  19847  cnt1  19851  cnhaus  19855  hmeoimaf1o  20271  uslgra1  24372  usgra1  24373  ctex  27531  rankeq1o  29828  hfninf  29843  eldioph2lem2  30694  f1dmvrnfibi  32312  f1vrnfibi  32313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-fn 5596  df-f 5597  df-f1 5598
  Copyright terms: Public domain W3C validator