![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > f1dom3fv3dif | Unicode version |
Description: The function values for a 1-1 function from a set with three different elements are different. (Contributed by AV, 20-Mar-2019.) |
Ref | Expression |
---|---|
f1dom3fv3dif.v | |
f1dom3fv3dif.n | |
f1dom3fv3dif.f |
Ref | Expression |
---|---|
f1dom3fv3dif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1dom3fv3dif.n | . . . 4 | |
2 | 1 | simp1d 1008 | . . 3 |
3 | f1dom3fv3dif.f | . . . . 5 | |
4 | eqidd 2458 | . . . . . . 7 | |
5 | 4 | 3mix1d 1171 | . . . . . 6 |
6 | f1dom3fv3dif.v | . . . . . . . 8 | |
7 | 6 | simp1d 1008 | . . . . . . 7 |
8 | eltpg 4071 | . . . . . . 7 | |
9 | 7, 8 | syl 16 | . . . . . 6 |
10 | 5, 9 | mpbird 232 | . . . . 5 |
11 | eqidd 2458 | . . . . . . 7 | |
12 | 11 | 3mix2d 1172 | . . . . . 6 |
13 | 6 | simp2d 1009 | . . . . . . 7 |
14 | eltpg 4071 | . . . . . . 7 | |
15 | 13, 14 | syl 16 | . . . . . 6 |
16 | 12, 15 | mpbird 232 | . . . . 5 |
17 | f1fveq 6170 | . . . . 5 | |
18 | 3, 10, 16, 17 | syl12anc 1226 | . . . 4 |
19 | 18 | necon3bid 2715 | . . 3 |
20 | 2, 19 | mpbird 232 | . 2 |
21 | 1 | simp2d 1009 | . . 3 |
22 | 6 | simp3d 1010 | . . . . . 6 |
23 | tpid3g 4145 | . . . . . 6 | |
24 | 22, 23 | syl 16 | . . . . 5 |
25 | f1fveq 6170 | . . . . 5 | |
26 | 3, 10, 24, 25 | syl12anc 1226 | . . . 4 |
27 | 26 | necon3bid 2715 | . . 3 |
28 | 21, 27 | mpbird 232 | . 2 |
29 | 1 | simp3d 1010 | . . 3 |
30 | f1fveq 6170 | . . . . 5 | |
31 | 3, 16, 24, 30 | syl12anc 1226 | . . . 4 |
32 | 31 | necon3bid 2715 | . . 3 |
33 | 29, 32 | mpbird 232 | . 2 |
34 | 20, 28, 33 | 3jca 1176 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
\/ w3o 972 /\ w3a 973 = wceq 1395
e. wcel 1818 =/= wne 2652 { ctp 4033
-1-1-> wf1 5590
` cfv 5593 |
This theorem is referenced by: f1dom3el3dif 6176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fv 5601 |
Copyright terms: Public domain | W3C validator |