![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > f1fi | Unicode version |
Description: If a 1-to-1 function has a finite codomain its domain is finite. (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
f1fi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 5786 | . . . 4 | |
2 | frn 5742 | . . . 4 | |
3 | 1, 2 | syl 16 | . . 3 |
4 | ssfi 7760 | . . 3 | |
5 | 3, 4 | sylan2 474 | . 2 |
6 | f1f1orn 5832 | . . . 4 | |
7 | 6 | adantl 466 | . . 3 |
8 | f1ocnv 5833 | . . 3 | |
9 | f1ofo 5828 | . . 3 | |
10 | 7, 8, 9 | 3syl 20 | . 2 |
11 | fofi 7826 | . 2 | |
12 | 5, 10, 11 | syl2anc 661 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
e. wcel 1818 C_ wss 3475 `' ccnv 5003
ran crn 5005 --> wf 5589 -1-1-> wf1 5590 -onto-> wfo 5591 -1-1-onto-> wf1o 5592 cfn 7536 |
This theorem is referenced by: ixpfi2 7838 fsumvma 23488 edgusgranbfin 24450 fourierdlem51 31940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-1o 7149 df-er 7330 df-en 7537 df-dom 7538 df-fin 7540 |
Copyright terms: Public domain | W3C validator |