![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > f1imass | Unicode version |
Description: Taking images under a one-to-one function preserves subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.) |
Ref | Expression |
---|---|
f1imass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplrl 761 | . . . . . . 7 | |
2 | 1 | sseld 3502 | . . . . . 6 |
3 | simplr 755 | . . . . . . . . 9 | |
4 | 3 | sseld 3502 | . . . . . . . 8 |
5 | simplll 759 | . . . . . . . . 9 | |
6 | simpr 461 | . . . . . . . . 9 | |
7 | simp1rl 1061 | . . . . . . . . . 10 | |
8 | 7 | 3expa 1196 | . . . . . . . . 9 |
9 | f1elima 6171 | . . . . . . . . 9 | |
10 | 5, 6, 8, 9 | syl3anc 1228 | . . . . . . . 8 |
11 | simp1rr 1062 | . . . . . . . . . 10 | |
12 | 11 | 3expa 1196 | . . . . . . . . 9 |
13 | f1elima 6171 | . . . . . . . . 9 | |
14 | 5, 6, 12, 13 | syl3anc 1228 | . . . . . . . 8 |
15 | 4, 10, 14 | 3imtr3d 267 | . . . . . . 7 |
16 | 15 | ex 434 | . . . . . 6 |
17 | 2, 16 | syld 44 | . . . . 5 |
18 | 17 | pm2.43d 48 | . . . 4 |
19 | 18 | ssrdv 3509 | . . 3 |
20 | 19 | ex 434 | . 2 |
21 | imass2 5377 | . 2 | |
22 | 20, 21 | impbid1 203 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 e. wcel 1818 C_ wss 3475
" cima 5007 -1-1-> wf1 5590 ` cfv 5593 |
This theorem is referenced by: f1imaeq 6173 f1imapss 6174 enfin2i 8722 tsmsf1o 20647 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fv 5601 |
Copyright terms: Public domain | W3C validator |