![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > f1ococnv2 | Unicode version |
Description: The composition of a one-to-one onto function and its converse equals the identity relation restricted to the function's range. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Stefan O'Rear, 12-Feb-2015.) |
Ref | Expression |
---|---|
f1ococnv2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofo 5828 | . 2 | |
2 | fococnv2 5846 | . 2 | |
3 | 1, 2 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
cid 4795
`' ccnv 5003 |` cres 5006 o. ccom 5008
-onto-> wfo 5591
-1-1-onto-> wf1o 5592 |
This theorem is referenced by: f1ococnv1 5849 f1ocnvfv2 6183 mapen 7701 hashfacen 12503 setcinv 15417 catcisolem 15433 symginv 16427 f1omvdco2 16473 gsumval3OLD 16908 gsumval3 16911 gsumzf1o 16917 gsumzf1oOLD 16920 psrass1lem 18029 evl1var 18372 pf1ind 18391 fcobij 27548 erdsze2lem2 28648 eldioph2 30695 rngcinv 32789 rngcinvOLD 32801 ringcinv 32840 ringcinvOLD 32864 ltrncoidN 35852 cdlemg46 36461 cdlemk45 36673 cdlemk55a 36685 tendocnv 36748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 |
Copyright terms: Public domain | W3C validator |