MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq123d Unicode version

Theorem f1oeq123d 5818
Description: Equality deduction for one-to-one onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
f1eq123d.1
f1eq123d.2
f1eq123d.3
Assertion
Ref Expression
f1oeq123d

Proof of Theorem f1oeq123d
StepHypRef Expression
1 f1eq123d.1 . . 3
2 f1oeq1 5812 . . 3
31, 2syl 16 . 2
4 f1eq123d.2 . . 3
5 f1oeq2 5813 . . 3
64, 5syl 16 . 2
7 f1eq123d.3 . . 3
8 f1oeq3 5814 . . 3
97, 8syl 16 . 2
103, 6, 93bitrd 279 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  =wceq 1395  -1-1-onto->wf1o 5592
This theorem is referenced by:  f1oprswap  5860  f1oprg  5861  cnfcom  8165  cnfcomOLD  8173  ackbij2lem2  8641  s2f1o  12864  s4f1o  12866  idffth  15302  ressffth  15307  symg1bas  16421  symg2bas  16423  symgfixels  16459  symgfixelsi  16460  rhmf1o  17381  mat1f1o  18980  isismt  23921  wwlkextbij  24733  foresf1o  27403  indf1ofs  28039  eulerpartgbij  28311  eulerpartlemn  28320  rnghmf1o  32709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600
  Copyright terms: Public domain W3C validator