![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > f1oiso2 | Unicode version |
Description: Any one-to-one onto function determines an isomorphism with an induced relation . (Contributed by Mario Carneiro, 9-Mar-2013.) |
Ref | Expression |
---|---|
f1oiso2.1 |
Ref | Expression |
---|---|
f1oiso2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oiso2.1 | . . 3 | |
2 | f1ocnvdm 6188 | . . . . . . . . 9 | |
3 | 2 | adantrr 716 | . . . . . . . 8 |
4 | 3 | 3adant3 1016 | . . . . . . 7 |
5 | f1ocnvdm 6188 | . . . . . . . . . 10 | |
6 | 5 | adantrl 715 | . . . . . . . . 9 |
7 | 6 | 3adant3 1016 | . . . . . . . 8 |
8 | f1ocnvfv2 6183 | . . . . . . . . . . 11 | |
9 | 8 | eqcomd 2465 | . . . . . . . . . 10 |
10 | f1ocnvfv2 6183 | . . . . . . . . . . 11 | |
11 | 10 | eqcomd 2465 | . . . . . . . . . 10 |
12 | 9, 11 | anim12dan 837 | . . . . . . . . 9 |
13 | 12 | 3adant3 1016 | . . . . . . . 8 |
14 | simp3 998 | . . . . . . . 8 | |
15 | fveq2 5871 | . . . . . . . . . . . 12 | |
16 | 15 | eqeq2d 2471 | . . . . . . . . . . 11 |
17 | 16 | anbi2d 703 | . . . . . . . . . 10 |
18 | breq2 4456 | . . . . . . . . . 10 | |
19 | 17, 18 | anbi12d 710 | . . . . . . . . 9 |
20 | 19 | rspcev 3210 | . . . . . . . 8 |
21 | 7, 13, 14, 20 | syl12anc 1226 | . . . . . . 7 |
22 | fveq2 5871 | . . . . . . . . . . . 12 | |
23 | 22 | eqeq2d 2471 | . . . . . . . . . . 11 |
24 | 23 | anbi1d 704 | . . . . . . . . . 10 |
25 | breq1 4455 | . . . . . . . . . 10 | |
26 | 24, 25 | anbi12d 710 | . . . . . . . . 9 |
27 | 26 | rexbidv 2968 | . . . . . . . 8 |
28 | 27 | rspcev 3210 | . . . . . . 7 |
29 | 4, 21, 28 | syl2anc 661 | . . . . . 6 |
30 | 29 | 3expib 1199 | . . . . 5 |
31 | simp3ll 1067 | . . . . . . . . 9 | |
32 | simp1 996 | . . . . . . . . . 10 | |
33 | simp2l 1022 | . . . . . . . . . 10 | |
34 | f1of 5821 | . . . . . . . . . . 11 | |
35 | 34 | ffvelrnda 6031 | . . . . . . . . . 10 |
36 | 32, 33, 35 | syl2anc 661 | . . . . . . . . 9 |
37 | 31, 36 | eqeltrd 2545 | . . . . . . . 8 |
38 | simp3lr 1068 | . . . . . . . . 9 | |
39 | simp2r 1023 | . . . . . . . . . 10 | |
40 | 34 | ffvelrnda 6031 | . . . . . . . . . 10 |
41 | 32, 39, 40 | syl2anc 661 | . . . . . . . . 9 |
42 | 38, 41 | eqeltrd 2545 | . . . . . . . 8 |
43 | simp3r 1025 | . . . . . . . . 9 | |
44 | 31 | eqcomd 2465 | . . . . . . . . . 10 |
45 | f1ocnvfv 6184 | . . . . . . . . . . 11 | |
46 | 32, 33, 45 | syl2anc 661 | . . . . . . . . . 10 |
47 | 44, 46 | mpd 15 | . . . . . . . . 9 |
48 | 38 | eqcomd 2465 | . . . . . . . . . 10 |
49 | f1ocnvfv 6184 | . . . . . . . . . . 11 | |
50 | 32, 39, 49 | syl2anc 661 | . . . . . . . . . 10 |
51 | 48, 50 | mpd 15 | . . . . . . . . 9 |
52 | 43, 47, 51 | 3brtr4d 4482 | . . . . . . . 8 |
53 | 37, 42, 52 | jca31 534 | . . . . . . 7 |
54 | 53 | 3exp 1195 | . . . . . 6 |
55 | 54 | rexlimdvv 2955 | . . . . 5 |
56 | 30, 55 | impbid 191 | . . . 4 |
57 | 56 | opabbidv 4515 | . . 3 |
58 | 1, 57 | syl5eq 2510 | . 2 |
59 | f1oiso 6247 | . 2 | |
60 | 58, 59 | mpdan 668 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
E. wrex 2808 class class class wbr 4452
{ copab 4509 `' ccnv 5003
-1-1-onto-> wf1o 5592
` cfv 5593 Isom wiso 5594 |
This theorem is referenced by: fnwelem 6915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 |
Copyright terms: Public domain | W3C validator |