![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > f1oprg | Unicode version |
Description: An unordered pair of ordered pairs with different elements is a one-to-one onto function, analogous to f1oprswap 5860. (Contributed by Alexander van der Vekens, 14-Aug-2017.) |
Ref | Expression |
---|---|
f1oprg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1osng 5859 | . . . . 5 | |
2 | 1 | ad2antrr 725 | . . . 4 |
3 | f1osng 5859 | . . . . 5 | |
4 | 3 | ad2antlr 726 | . . . 4 |
5 | disjsn2 4091 | . . . . 5 | |
6 | 5 | ad2antrl 727 | . . . 4 |
7 | disjsn2 4091 | . . . . 5 | |
8 | 7 | ad2antll 728 | . . . 4 |
9 | f1oun 5840 | . . . 4 | |
10 | 2, 4, 6, 8, 9 | syl22anc 1229 | . . 3 |
11 | df-pr 4032 | . . . . . 6 | |
12 | 11 | eqcomi 2470 | . . . . 5 |
13 | 12 | a1i 11 | . . . 4 |
14 | df-pr 4032 | . . . . . 6 | |
15 | 14 | eqcomi 2470 | . . . . 5 |
16 | 15 | a1i 11 | . . . 4 |
17 | df-pr 4032 | . . . . . 6 | |
18 | 17 | eqcomi 2470 | . . . . 5 |
19 | 18 | a1i 11 | . . . 4 |
20 | 13, 16, 19 | f1oeq123d 5818 | . . 3 |
21 | 10, 20 | mpbid 210 | . 2 |
22 | 21 | ex 434 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 =/= wne 2652
u. cun 3473 i^i cin 3474 c0 3784 { csn 4029 { cpr 4031
<. cop 4035 -1-1-onto-> wf1o 5592 |
This theorem is referenced by: s2f1o 12864 f1oun2prg 12865 symg2bas 16423 2trllemE 24555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 |
Copyright terms: Public domain | W3C validator |