MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1opw Unicode version

Theorem f1opw 6529
Description: A one-to-one mapping induces a one-to-one mapping on power sets. (Contributed by Stefan O'Rear, 18-Nov-2014.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
f1opw
Distinct variable groups:   ,   ,   ,

Proof of Theorem f1opw
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 id 22 . 2
2 dff1o3 5827 . . . 4
32simprbi 464 . . 3
4 vex 3112 . . . 4
54funimaex 5671 . . 3
63, 5syl 16 . 2
7 f1ofun 5823 . . 3
8 vex 3112 . . . 4
98funimaex 5671 . . 3
107, 9syl 16 . 2
111, 6, 10f1opw2 6528 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  e.wcel 1818   cvv 3109  ~Pcpw 4012  e.cmpt 4510  `'ccnv 5003  "cima 5007  Funwfun 5587  -onto->wfo 5591  -1-1-onto->wf1o 5592
This theorem is referenced by:  ackbij2lem2  8641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-rep 4563  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-mpt 4512  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600
  Copyright terms: Public domain W3C validator