![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > f1opw2 | Unicode version |
Description: A one-to-one mapping induces a one-to-one mapping on power sets. This version of f1opw 6529 avoids the Axiom of Replacement. (Contributed by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
f1opw2.1 | |
f1opw2.2 | |
f1opw2.3 |
Ref | Expression |
---|---|
f1opw2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2457 | . 2 | |
2 | imassrn 5353 | . . . . 5 | |
3 | f1opw2.1 | . . . . . . 7 | |
4 | f1ofo 5828 | . . . . . . 7 | |
5 | 3, 4 | syl 16 | . . . . . 6 |
6 | forn 5803 | . . . . . 6 | |
7 | 5, 6 | syl 16 | . . . . 5 |
8 | 2, 7 | syl5sseq 3551 | . . . 4 |
9 | f1opw2.3 | . . . . 5 | |
10 | elpwg 4020 | . . . . 5 | |
11 | 9, 10 | syl 16 | . . . 4 |
12 | 8, 11 | mpbird 232 | . . 3 |
13 | 12 | adantr 465 | . 2 |
14 | imassrn 5353 | . . . . 5 | |
15 | dfdm4 5200 | . . . . . 6 | |
16 | f1odm 5825 | . . . . . . 7 | |
17 | 3, 16 | syl 16 | . . . . . 6 |
18 | 15, 17 | syl5eqr 2512 | . . . . 5 |
19 | 14, 18 | syl5sseq 3551 | . . . 4 |
20 | f1opw2.2 | . . . . 5 | |
21 | elpwg 4020 | . . . . 5 | |
22 | 20, 21 | syl 16 | . . . 4 |
23 | 19, 22 | mpbird 232 | . . 3 |
24 | 23 | adantr 465 | . 2 |
25 | elpwi 4021 | . . . . . . 7 | |
26 | 25 | adantl 466 | . . . . . 6 |
27 | foimacnv 5838 | . . . . . 6 | |
28 | 5, 26, 27 | syl2an 477 | . . . . 5 |
29 | 28 | eqcomd 2465 | . . . 4 |
30 | imaeq2 5338 | . . . . 5 | |
31 | 30 | eqeq2d 2471 | . . . 4 |
32 | 29, 31 | syl5ibrcom 222 | . . 3 |
33 | f1of1 5820 | . . . . . . 7 | |
34 | 3, 33 | syl 16 | . . . . . 6 |
35 | elpwi 4021 | . . . . . . 7 | |
36 | 35 | adantr 465 | . . . . . 6 |
37 | f1imacnv 5837 | . . . . . 6 | |
38 | 34, 36, 37 | syl2an 477 | . . . . 5 |
39 | 38 | eqcomd 2465 | . . . 4 |
40 | imaeq2 5338 | . . . . 5 | |
41 | 40 | eqeq2d 2471 | . . . 4 |
42 | 39, 41 | syl5ibrcom 222 | . . 3 |
43 | 32, 42 | impbid 191 | . 2 |
44 | 1, 13, 24, 43 | f1o2d 6527 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
cvv 3109
C_ wss 3475 ~P cpw 4012 e. cmpt 4510
`' ccnv 5003 dom cdm 5004 ran crn 5005
" cima 5007 -1-1-> wf1 5590 -onto-> wfo 5591 -1-1-onto-> wf1o 5592 |
This theorem is referenced by: f1opw 6529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 |
Copyright terms: Public domain | W3C validator |