![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > f1opwfi | Unicode version |
Description: A one-to-one mapping induces a one-to-one mapping on finite subsets. (Contributed by Mario Carneiro, 25-Jan-2015.) |
Ref | Expression |
---|---|
f1opwfi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2457 | . 2 | |
2 | imassrn 5353 | . . . . . 6 | |
3 | f1ofo 5828 | . . . . . . 7 | |
4 | forn 5803 | . . . . . . 7 | |
5 | 3, 4 | syl 16 | . . . . . 6 |
6 | 2, 5 | syl5sseq 3551 | . . . . 5 |
7 | 6 | adantr 465 | . . . 4 |
8 | inss2 3718 | . . . . . . 7 | |
9 | simpr 461 | . . . . . . 7 | |
10 | 8, 9 | sseldi 3501 | . . . . . 6 |
11 | f1ofun 5823 | . . . . . . . 8 | |
12 | 11 | adantr 465 | . . . . . . 7 |
13 | inss1 3717 | . . . . . . . . . . 11 | |
14 | 13 | sseli 3499 | . . . . . . . . . 10 |
15 | elpwi 4021 | . . . . . . . . . 10 | |
16 | 14, 15 | syl 16 | . . . . . . . . 9 |
17 | 16 | adantl 466 | . . . . . . . 8 |
18 | f1odm 5825 | . . . . . . . . 9 | |
19 | 18 | adantr 465 | . . . . . . . 8 |
20 | 17, 19 | sseqtr4d 3540 | . . . . . . 7 |
21 | fores 5809 | . . . . . . 7 | |
22 | 12, 20, 21 | syl2anc 661 | . . . . . 6 |
23 | fofi 7826 | . . . . . 6 | |
24 | 10, 22, 23 | syl2anc 661 | . . . . 5 |
25 | elpwg 4020 | . . . . 5 | |
26 | 24, 25 | syl 16 | . . . 4 |
27 | 7, 26 | mpbird 232 | . . 3 |
28 | 27, 24 | elind 3687 | . 2 |
29 | imassrn 5353 | . . . . . 6 | |
30 | dfdm4 5200 | . . . . . . 7 | |
31 | 30, 18 | syl5eqr 2512 | . . . . . 6 |
32 | 29, 31 | syl5sseq 3551 | . . . . 5 |
33 | 32 | adantr 465 | . . . 4 |
34 | inss2 3718 | . . . . . . 7 | |
35 | simpr 461 | . . . . . . 7 | |
36 | 34, 35 | sseldi 3501 | . . . . . 6 |
37 | dff1o3 5827 | . . . . . . . . 9 | |
38 | 37 | simprbi 464 | . . . . . . . 8 |
39 | 38 | adantr 465 | . . . . . . 7 |
40 | inss1 3717 | . . . . . . . . . . 11 | |
41 | 40 | sseli 3499 | . . . . . . . . . 10 |
42 | 41 | adantl 466 | . . . . . . . . 9 |
43 | elpwi 4021 | . . . . . . . . 9 | |
44 | 42, 43 | syl 16 | . . . . . . . 8 |
45 | f1ocnv 5833 | . . . . . . . . . 10 | |
46 | 45 | adantr 465 | . . . . . . . . 9 |
47 | f1odm 5825 | . . . . . . . . 9 | |
48 | 46, 47 | syl 16 | . . . . . . . 8 |
49 | 44, 48 | sseqtr4d 3540 | . . . . . . 7 |
50 | fores 5809 | . . . . . . 7 | |
51 | 39, 49, 50 | syl2anc 661 | . . . . . 6 |
52 | fofi 7826 | . . . . . 6 | |
53 | 36, 51, 52 | syl2anc 661 | . . . . 5 |
54 | elpwg 4020 | . . . . 5 | |
55 | 53, 54 | syl 16 | . . . 4 |
56 | 33, 55 | mpbird 232 | . . 3 |
57 | 56, 53 | elind 3687 | . 2 |
58 | 14, 41 | anim12i 566 | . . 3 |
59 | 43 | adantl 466 | . . . . . . 7 |
60 | foimacnv 5838 | . . . . . . 7 | |
61 | 3, 59, 60 | syl2an 477 | . . . . . 6 |
62 | 61 | eqcomd 2465 | . . . . 5 |
63 | imaeq2 5338 | . . . . . 6 | |
64 | 63 | eqeq2d 2471 | . . . . 5 |
65 | 62, 64 | syl5ibrcom 222 | . . . 4 |
66 | f1of1 5820 | . . . . . . 7 | |
67 | 15 | adantr 465 | . . . . . . 7 |
68 | f1imacnv 5837 | . . . . . . 7 | |
69 | 66, 67, 68 | syl2an 477 | . . . . . 6 |
70 | 69 | eqcomd 2465 | . . . . 5 |
71 | imaeq2 5338 | . . . . . 6 | |
72 | 71 | eqeq2d 2471 | . . . . 5 |
73 | 70, 72 | syl5ibrcom 222 | . . . 4 |
74 | 65, 73 | impbid 191 | . . 3 |
75 | 58, 74 | sylan2 474 | . 2 |
76 | 1, 28, 57, 75 | f1o2d 6527 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
i^i cin 3474 C_ wss 3475 ~P cpw 4012
e. cmpt 4510 `' ccnv 5003 dom cdm 5004
ran crn 5005 |` cres 5006 " cima 5007
Fun wfun 5587
-1-1-> wf1 5590
-onto-> wfo 5591
-1-1-onto-> wf1o 5592
cfn 7536 |
This theorem is referenced by: fictb 8646 ackbijnn 13640 tsmsf1o 20647 eulerpartgbij 28311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-1o 7149 df-er 7330 df-en 7537 df-dom 7538 df-fin 7540 |
Copyright terms: Public domain | W3C validator |