![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > f1oun2prg | Unicode version |
Description: A union of unordered pairs of ordered pairs with different elements is a one-to-one onto function. (Contributed by Alexander van der Vekens, 14-Aug-2017.) |
Ref | Expression |
---|---|
f1oun2prg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 457 | . . . . . . 7 | |
2 | 0z 10900 | . . . . . . 7 | |
3 | 1, 2 | jctil 537 | . . . . . 6 |
4 | 3 | ad2antrr 725 | . . . . 5 |
5 | simpr 461 | . . . . . . 7 | |
6 | 1z 10919 | . . . . . . 7 | |
7 | 5, 6 | jctil 537 | . . . . . 6 |
8 | 7 | ad2antrr 725 | . . . . 5 |
9 | 4, 8 | jca 532 | . . . 4 |
10 | id 22 | . . . . . . . 8 | |
11 | 10 | 3ad2ant1 1017 | . . . . . . 7 |
12 | 0ne1 10628 | . . . . . . 7 | |
13 | 11, 12 | jctil 537 | . . . . . 6 |
14 | 13 | adantr 465 | . . . . 5 |
15 | 14 | adantl 466 | . . . 4 |
16 | f1oprg 5861 | . . . 4 | |
17 | 9, 15, 16 | sylc 60 | . . 3 |
18 | simpl 457 | . . . . . . . 8 | |
19 | 2nn 10718 | . . . . . . . 8 | |
20 | 18, 19 | jctil 537 | . . . . . . 7 |
21 | 20 | adantl 466 | . . . . . 6 |
22 | simpr 461 | . . . . . . . 8 | |
23 | 3nn 10719 | . . . . . . . 8 | |
24 | 22, 23 | jctil 537 | . . . . . . 7 |
25 | 24 | adantl 466 | . . . . . 6 |
26 | 21, 25 | jca 532 | . . . . 5 |
27 | 26 | adantr 465 | . . . 4 |
28 | id 22 | . . . . . . . 8 | |
29 | 28 | 3ad2ant3 1019 | . . . . . . 7 |
30 | 2re 10630 | . . . . . . . 8 | |
31 | 2lt3 10728 | . . . . . . . 8 | |
32 | 30, 31 | ltneii 9718 | . . . . . . 7 |
33 | 29, 32 | jctil 537 | . . . . . 6 |
34 | 33 | adantl 466 | . . . . 5 |
35 | 34 | adantl 466 | . . . 4 |
36 | f1oprg 5861 | . . . 4 | |
37 | 27, 35, 36 | sylc 60 | . . 3 |
38 | disjsn2 4091 | . . . . . . . . . 10 | |
39 | 38 | 3ad2ant2 1018 | . . . . . . . . 9 |
40 | disjsn2 4091 | . . . . . . . . . 10 | |
41 | 40 | 3ad2ant1 1017 | . . . . . . . . 9 |
42 | 39, 41 | anim12i 566 | . . . . . . . 8 |
43 | 42 | adantl 466 | . . . . . . 7 |
44 | df-pr 4032 | . . . . . . . . . 10 | |
45 | 44 | ineq1i 3695 | . . . . . . . . 9 |
46 | 45 | eqeq1i 2464 | . . . . . . . 8 |
47 | undisj1 3878 | . . . . . . . 8 | |
48 | 46, 47 | bitr4i 252 | . . . . . . 7 |
49 | 43, 48 | sylibr 212 | . . . . . 6 |
50 | disjsn2 4091 | . . . . . . . . . 10 | |
51 | 50 | 3ad2ant3 1019 | . . . . . . . . 9 |
52 | disjsn2 4091 | . . . . . . . . . 10 | |
53 | 52 | 3ad2ant2 1018 | . . . . . . . . 9 |
54 | 51, 53 | anim12i 566 | . . . . . . . 8 |
55 | 54 | adantl 466 | . . . . . . 7 |
56 | 44 | ineq1i 3695 | . . . . . . . . 9 |
57 | 56 | eqeq1i 2464 | . . . . . . . 8 |
58 | undisj1 3878 | . . . . . . . 8 | |
59 | 57, 58 | bitr4i 252 | . . . . . . 7 |
60 | 55, 59 | sylibr 212 | . . . . . 6 |
61 | 49, 60 | jca 532 | . . . . 5 |
62 | undisj2 3879 | . . . . . 6 | |
63 | df-pr 4032 | . . . . . . . . 9 | |
64 | 63 | eqcomi 2470 | . . . . . . . 8 |
65 | 64 | ineq2i 3696 | . . . . . . 7 |
66 | 65 | eqeq1i 2464 | . . . . . 6 |
67 | 62, 66 | bitri 249 | . . . . 5 |
68 | 61, 67 | sylib 196 | . . . 4 |
69 | df-pr 4032 | . . . . . . . . 9 | |
70 | 69 | eqcomi 2470 | . . . . . . . 8 |
71 | 70 | ineq1i 3695 | . . . . . . 7 |
72 | 0ne2 10772 | . . . . . . . . . 10 | |
73 | disjsn2 4091 | . . . . . . . . . 10 | |
74 | 72, 73 | ax-mp 5 | . . . . . . . . 9 |
75 | 1ne2 10773 | . . . . . . . . . 10 | |
76 | disjsn2 4091 | . . . . . . . . . 10 | |
77 | 75, 76 | ax-mp 5 | . . . . . . . . 9 |
78 | 74, 77 | pm3.2i 455 | . . . . . . . 8 |
79 | undisj1 3878 | . . . . . . . 8 | |
80 | 78, 79 | mpbi 208 | . . . . . . 7 |
81 | 71, 80 | eqtr3i 2488 | . . . . . 6 |
82 | 70 | ineq1i 3695 | . . . . . . 7 |
83 | 3ne0 10655 | . . . . . . . . . . 11 | |
84 | 83 | necomi 2727 | . . . . . . . . . 10 |
85 | disjsn2 4091 | . . . . . . . . . 10 | |
86 | 84, 85 | ax-mp 5 | . . . . . . . . 9 |
87 | 1re 9616 | . . . . . . . . . . 11 | |
88 | 1lt3 10729 | . . . . . . . . . . 11 | |
89 | 87, 88 | ltneii 9718 | . . . . . . . . . 10 |
90 | disjsn2 4091 | . . . . . . . . . 10 | |
91 | 89, 90 | ax-mp 5 | . . . . . . . . 9 |
92 | 86, 91 | pm3.2i 455 | . . . . . . . 8 |
93 | undisj1 3878 | . . . . . . . 8 | |
94 | 92, 93 | mpbi 208 | . . . . . . 7 |
95 | 82, 94 | eqtr3i 2488 | . . . . . 6 |
96 | 81, 95 | pm3.2i 455 | . . . . 5 |
97 | undisj2 3879 | . . . . . 6 | |
98 | df-pr 4032 | . . . . . . . . 9 | |
99 | 98 | eqcomi 2470 | . . . . . . . 8 |
100 | 99 | ineq2i 3696 | . . . . . . 7 |
101 | 100 | eqeq1i 2464 | . . . . . 6 |
102 | 97, 101 | bitri 249 | . . . . 5 |
103 | 96, 102 | mpbi 208 | . . . 4 |
104 | 68, 103 | jctil 537 | . . 3 |
105 | f1oun 5840 | . . 3 | |
106 | 17, 37, 104, 105 | syl21anc 1227 | . 2 |
107 | 106 | ex 434 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
=/= wne 2652 u. cun 3473 i^i cin 3474
c0 3784 { csn 4029 { cpr 4031
<. cop 4035 -1-1-onto-> wf1o 5592 0 cc0 9513 1 c1 9514
cn 10561 2 c2 10610 3 c3 10611
cz 10889 |
This theorem is referenced by: s4f1o 12866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-2 10619 df-3 10620 df-z 10890 |
Copyright terms: Public domain | W3C validator |