MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1rel Unicode version

Theorem f1rel 5789
Description: A one-to-one onto mapping is a relation. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1rel

Proof of Theorem f1rel
StepHypRef Expression
1 f1fn 5787 . 2
2 fnrel 5684 . 2
31, 2syl 16 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  Relwrel 5009  Fnwfn 5588  -1-1->wf1 5590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598
  Copyright terms: Public domain W3C validator