![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > f1ssr | Unicode version |
Description: A function that is one-to-one is also one-to-one on some superset of its range. (Contributed by Stefan O'Rear, 20-Feb-2015.) |
Ref | Expression |
---|---|
f1ssr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 5787 | . . . 4 | |
2 | 1 | adantr 465 | . . 3 |
3 | simpr 461 | . . 3 | |
4 | df-f 5597 | . . 3 | |
5 | 2, 3, 4 | sylanbrc 664 | . 2 |
6 | df-f1 5598 | . . . 4 | |
7 | 6 | simprbi 464 | . . 3 |
8 | 7 | adantr 465 | . 2 |
9 | df-f1 5598 | . 2 | |
10 | 5, 8, 9 | sylanbrc 664 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
C_ wss 3475 `' ccnv 5003 ran crn 5005
Fun wfun 5587
Fn wfn 5588 --> wf 5589 -1-1-> wf1 5590 |
This theorem is referenced by: domdifsn 7620 marypha1 7914 m2cpmf1 19244 usgrares1 24410 usgresvm1 32443 usgresvm1ALT 32447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 df-f 5597 df-f1 5598 |
Copyright terms: Public domain | W3C validator |