MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ssr Unicode version

Theorem f1ssr 5792
Description: A function that is one-to-one is also one-to-one on some superset of its range. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Assertion
Ref Expression
f1ssr

Proof of Theorem f1ssr
StepHypRef Expression
1 f1fn 5787 . . . 4
21adantr 465 . . 3
3 simpr 461 . . 3
4 df-f 5597 . . 3
52, 3, 4sylanbrc 664 . 2
6 df-f1 5598 . . . 4
76simprbi 464 . . 3
87adantr 465 . 2
9 df-f1 5598 . 2
105, 8, 9sylanbrc 664 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  C_wss 3475  `'ccnv 5003  rancrn 5005  Funwfun 5587  Fnwfn 5588  -->wf 5589  -1-1->wf1 5590
This theorem is referenced by:  domdifsn  7620  marypha1  7914  m2cpmf1  19244  usgrares1  24410  usgresvm1  32443  usgresvm1ALT  32447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-f 5597  df-f1 5598
  Copyright terms: Public domain W3C validator