MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ssres Unicode version

Theorem f1ssres 5793
Description: A function that is one-to-one is also one-to-one on some subset of its domain. (Contributed by Mario Carneiro, 17-Jan-2015.)
Assertion
Ref Expression
f1ssres

Proof of Theorem f1ssres
StepHypRef Expression
1 f1f 5786 . . 3
2 fssres 5756 . . 3
31, 2sylan 471 . 2
4 df-f1 5598 . . . . 5
54simprbi 464 . . . 4
6 funres11 5661 . . . 4
75, 6syl 16 . . 3
87adantr 465 . 2
9 df-f1 5598 . 2
103, 8, 9sylanbrc 664 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  C_wss 3475  `'ccnv 5003  |`cres 5006  Funwfun 5587  -->wf 5589  -1-1->wf1 5590
This theorem is referenced by:  f1ores  5835  oacomf1olem  7232  pwfseqlem5  9062  hashimarn  12496  hashf1lem2  12505  conjsubgen  16299  sylow1lem2  16619  sylow2blem1  16640  usgrares  24369  usgrares1  24410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598
  Copyright terms: Public domain W3C validator