![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > facavg | Unicode version |
Description: The product of two factorials is greater than or equal to the factorial of (the floor of) their average. (Contributed by NM, 9-Dec-2005.) |
Ref | Expression |
---|---|
facavg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0readdcl 10883 | . . . . . 6 | |
2 | 1 | rehalfcld 10810 | . . . . 5 |
3 | flle 11936 | . . . . 5 | |
4 | 2, 3 | syl 16 | . . . 4 |
5 | reflcl 11933 | . . . . . 6 | |
6 | 2, 5 | syl 16 | . . . . 5 |
7 | nn0re 10829 | . . . . . 6 | |
8 | 7 | adantr 465 | . . . . 5 |
9 | letr 9699 | . . . . 5 | |
10 | 6, 2, 8, 9 | syl3anc 1228 | . . . 4 |
11 | 4, 10 | mpand 675 | . . 3 |
12 | nn0addcl 10856 | . . . . . . 7 | |
13 | 12 | nn0ge0d 10880 | . . . . . 6 |
14 | halfnneg2 10795 | . . . . . . 7 | |
15 | 1, 14 | syl 16 | . . . . . 6 |
16 | 13, 15 | mpbid 210 | . . . . 5 |
17 | flge0nn0 11954 | . . . . 5 | |
18 | 2, 16, 17 | syl2anc 661 | . . . 4 |
19 | simpl 457 | . . . 4 | |
20 | facwordi 12367 | . . . . 5 | |
21 | 20 | 3exp 1195 | . . . 4 |
22 | 18, 19, 21 | sylc 60 | . . 3 |
23 | faccl 12363 | . . . . . . . 8 | |
24 | 23 | nncnd 10577 | . . . . . . 7 |
25 | 24 | mulid1d 9634 | . . . . . 6 |
26 | 25 | adantr 465 | . . . . 5 |
27 | faccl 12363 | . . . . . . . 8 | |
28 | 27 | nnred 10576 | . . . . . . 7 |
29 | 28 | adantl 466 | . . . . . 6 |
30 | 23 | nnred 10576 | . . . . . . . 8 |
31 | 23 | nnnn0d 10877 | . . . . . . . . 9 |
32 | 31 | nn0ge0d 10880 | . . . . . . . 8 |
33 | 30, 32 | jca 532 | . . . . . . 7 |
34 | 33 | adantr 465 | . . . . . 6 |
35 | 27 | nnge1d 10603 | . . . . . . 7 |
36 | 35 | adantl 466 | . . . . . 6 |
37 | 1re 9616 | . . . . . . 7 | |
38 | lemul2a 10422 | . . . . . . 7 | |
39 | 37, 38 | mp3anl1 1318 | . . . . . 6 |
40 | 29, 34, 36, 39 | syl21anc 1227 | . . . . 5 |
41 | 26, 40 | eqbrtrrd 4474 | . . . 4 |
42 | faccl 12363 | . . . . . . 7 | |
43 | 18, 42 | syl 16 | . . . . . 6 |
44 | 43 | nnred 10576 | . . . . 5 |
45 | 30 | adantr 465 | . . . . 5 |
46 | remulcl 9598 | . . . . . 6 | |
47 | 30, 28, 46 | syl2an 477 | . . . . 5 |
48 | letr 9699 | . . . . 5 | |
49 | 44, 45, 47, 48 | syl3anc 1228 | . . . 4 |
50 | 41, 49 | mpan2d 674 | . . 3 |
51 | 11, 22, 50 | 3syld 55 | . 2 |
52 | nn0re 10829 | . . . . . 6 | |
53 | 52 | adantl 466 | . . . . 5 |
54 | letr 9699 | . . . . 5 | |
55 | 6, 2, 53, 54 | syl3anc 1228 | . . . 4 |
56 | 4, 55 | mpand 675 | . . 3 |
57 | simpr 461 | . . . 4 | |
58 | facwordi 12367 | . . . . 5 | |
59 | 58 | 3exp 1195 | . . . 4 |
60 | 18, 57, 59 | sylc 60 | . . 3 |
61 | 27 | nncnd 10577 | . . . . . . 7 |
62 | 61 | mulid2d 9635 | . . . . . 6 |
63 | 62 | adantl 466 | . . . . 5 |
64 | 27 | nnnn0d 10877 | . . . . . . . . 9 |
65 | 64 | nn0ge0d 10880 | . . . . . . . 8 |
66 | 28, 65 | jca 532 | . . . . . . 7 |
67 | 66 | adantl 466 | . . . . . 6 |
68 | 23 | nnge1d 10603 | . . . . . . 7 |
69 | 68 | adantr 465 | . . . . . 6 |
70 | lemul1a 10421 | . . . . . . 7 | |
71 | 37, 70 | mp3anl1 1318 | . . . . . 6 |
72 | 45, 67, 69, 71 | syl21anc 1227 | . . . . 5 |
73 | 63, 72 | eqbrtrrd 4474 | . . . 4 |
74 | letr 9699 | . . . . 5 | |
75 | 44, 29, 47, 74 | syl3anc 1228 | . . . 4 |
76 | 73, 75 | mpan2d 674 | . . 3 |
77 | 56, 60, 76 | 3syld 55 | . 2 |
78 | avgle 10805 | . . 3 | |
79 | 7, 52, 78 | syl2an 477 | . 2 |
80 | 51, 77, 79 | mpjaod 381 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
\/ wo 368 /\ wa 369 = wceq 1395
e. wcel 1818 class class class wbr 4452
` cfv 5593 (class class class)co 6296
cr 9512 0 cc0 9513 1 c1 9514
caddc 9516 cmul 9518 cle 9650 cdiv 10231 cn 10561 2 c2 10610 cn0 10820
cfl 11927
cfa 12353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-n0 10821 df-z 10890 df-uz 11111 df-fl 11929 df-seq 12108 df-fac 12354 |
Copyright terms: Public domain | W3C validator |