MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falortru Unicode version

Theorem falortru 1425
Description: A \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
falortru

Proof of Theorem falortru
StepHypRef Expression
1 tru 1399 . . 3
21olci 391 . 2
32bitru 1407 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  \/wo 368   wtru 1396   wfal 1400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370  df-tru 1398
  Copyright terms: Public domain W3C validator