![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fcof1oinvd | Unicode version |
Description: Show that a function is the inverse of a bijective function if their composition is the identity function. Formerly part of proof of fcof1o 6199. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by AV, 15-Dec-2019.) |
Ref | Expression |
---|---|
fcof1oinvd.f | |
fcof1oinvd.g | |
fcof1oinvd.b |
Ref | Expression |
---|---|
fcof1oinvd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcof1oinvd.b | . . 3 | |
2 | 1 | coeq2d 5170 | . 2 |
3 | coass 5531 | . . 3 | |
4 | fcof1oinvd.f | . . . . . 6 | |
5 | f1ococnv1 5849 | . . . . . 6 | |
6 | 4, 5 | syl 16 | . . . . 5 |
7 | 6 | coeq1d 5169 | . . . 4 |
8 | fcof1oinvd.g | . . . . 5 | |
9 | fcoi2 5765 | . . . . 5 | |
10 | 8, 9 | syl 16 | . . . 4 |
11 | 7, 10 | eqtrd 2498 | . . 3 |
12 | 3, 11 | syl5eqr 2512 | . 2 |
13 | f1ocnv 5833 | . . . . 5 | |
14 | 4, 13 | syl 16 | . . . 4 |
15 | f1of 5821 | . . . 4 | |
16 | 14, 15 | syl 16 | . . 3 |
17 | fcoi1 5764 | . . 3 | |
18 | 16, 17 | syl 16 | . 2 |
19 | 2, 12, 18 | 3eqtr3rd 2507 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
cid 4795
`' ccnv 5003 |` cres 5006 o. ccom 5008
--> wf 5589 -1-1-onto-> wf1o 5592 |
This theorem is referenced by: 2fcoidinvd 6198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 |
Copyright terms: Public domain | W3C validator |