![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fcoi2 | Unicode version |
Description: Composition of restricted identity and a mapping. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fcoi2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 5597 | . 2 | |
2 | cores 5515 | . . 3 | |
3 | fnrel 5684 | . . . 4 | |
4 | coi2 5529 | . . . 4 | |
5 | 3, 4 | syl 16 | . . 3 |
6 | 2, 5 | sylan9eqr 2520 | . 2 |
7 | 1, 6 | sylbi 195 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 C_ wss 3475 cid 4795
ran crn 5005 |` cres 5006 o. ccom 5008
Rel wrel 5009
Fn wfn 5588 --> wf 5589 |
This theorem is referenced by: fcof1oinvd 6196 mapen 7701 mapfien 7887 mapfienOLD 8159 hashfacen 12503 cofulid 15259 setccatid 15411 symggrp 16425 f1omvdco2 16473 symggen 16495 psgnunilem1 16518 gsumval3OLD 16908 gsumval3 16911 gsumzf1o 16917 gsumzf1oOLD 16920 frgpcyg 18612 f1linds 18860 qtophmeo 20318 motgrp 23930 hoico2 26676 fcoinver 27460 fcobij 27548 subfacp1lem5 28628 mendring 31141 estrccatid 32638 rngccatidOLD 32797 ringccatidOLD 32860 ltrncoidN 35852 trlcoat 36449 trlcone 36454 cdlemg47a 36460 cdlemg47 36462 trljco 36466 tgrpgrplem 36475 tendo1mul 36496 tendo0pl 36517 cdlemkid2 36650 cdlemk45 36673 cdlemk53b 36682 erng1r 36721 tendocnv 36748 dvalveclem 36752 dva0g 36754 dvhgrp 36834 dvhlveclem 36835 dvh0g 36838 cdlemn8 36931 dihordlem7b 36942 dihopelvalcpre 36975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-fun 5595 df-fn 5596 df-f 5597 |
Copyright terms: Public domain | W3C validator |