![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fcompt | Unicode version |
Description: Express composition of two functions as a maps-to applying both in sequence. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
fcompt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffvelrn 6029 | . . 3 | |
2 | 1 | adantll 713 | . 2 |
3 | ffn 5736 | . . . 4 | |
4 | 3 | adantl 466 | . . 3 |
5 | dffn5 5918 | . . 3 | |
6 | 4, 5 | sylib 196 | . 2 |
7 | ffn 5736 | . . . 4 | |
8 | 7 | adantr 465 | . . 3 |
9 | dffn5 5918 | . . 3 | |
10 | 8, 9 | sylib 196 | . 2 |
11 | fveq2 5871 | . 2 | |
12 | 2, 6, 10, 11 | fmptco 6064 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 e. cmpt 4510
o. ccom 5008 Fn wfn 5588 --> wf 5589
` cfv 5593 |
This theorem is referenced by: 2fvcoidd 6200 revco 12800 repsco 12805 caucvgrlem2 13497 fucidcl 15334 fucsect 15341 prf1st 15473 prf2nd 15474 curfcl 15501 yonedalem4c 15546 yonedalem3b 15548 yonedainv 15550 frmdup3 16035 efginvrel1 16746 frgpup3lem 16795 frgpup3 16796 dprdfinv 17059 dprdfinvOLD 17066 grpvlinv 18897 grpvrinv 18898 mhmvlin 18899 chcoeffeqlem 19386 prdstps 20130 imasdsf1olem 20876 meascnbl 28190 gamcvg2lem 28601 elmrsubrn 28880 mzprename 30682 mendassa 31143 mulc1cncfg 31583 expcnfg 31586 cncficcgt0 31691 dvsinax 31708 dirkercncflem2 31886 fourierdlem18 31907 fourierdlem53 31942 fourierdlem93 31982 fourierdlem101 31990 fourierdlem111 32000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 |
Copyright terms: Public domain | W3C validator |