![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fconst | Unicode version |
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fconst.1 |
Ref | Expression |
---|---|
fconst |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst.1 | . . 3 | |
2 | fconstmpt 5048 | . . 3 | |
3 | 1, 2 | fnmpti 5714 | . 2 |
4 | rnxpss 5444 | . 2 | |
5 | df-f 5597 | . 2 | |
6 | 3, 4, 5 | mpbir2an 920 | 1 |
Colors of variables: wff setvar class |
Syntax hints: e. wcel 1818 cvv 3109
C_ wss 3475 { csn 4029 X. cxp 5002
ran crn 5005 Fn wfn 5588 --> wf 5589 |
This theorem is referenced by: fconstg 5777 fodomr 7688 ofsubeq0 10558 ser0f 12160 hashgval 12408 hashinf 12410 hashf 12412 prodf1f 13701 pwssplit1 17705 psrbag0 18159 xkofvcn 20185 ibl0 22193 dvcmul 22347 dvcmulf 22348 dvexp 22356 elqaalem3 22717 basellem7 23360 basellem9 23362 axlowdimlem8 24252 axlowdimlem9 24253 axlowdimlem10 24254 axlowdimlem11 24255 axlowdimlem12 24256 0oo 25704 occllem 26221 ho01i 26747 nlelchi 26980 hmopidmchi 27070 eulerpartlemt 28310 plymul02 28503 fullfunfnv 29596 fullfunfv 29597 ftc1anclem5 30094 diophrw 30692 pwssplit4 31035 ofsubid 31229 dvsconst 31235 dvsid 31236 binomcxplemnn0 31254 binomcxplemnotnn0 31261 aacllem 33216 lfl0f 34794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-fun 5595 df-fn 5596 df-f 5597 |
Copyright terms: Public domain | W3C validator |