Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconst6 Unicode version

Theorem fconst6 5780
 Description: A constant function as a mapping. (Contributed by Jeff Madsen, 30-Nov-2009.) (Revised by Mario Carneiro, 22-Apr-2015.)
Hypothesis
Ref Expression
fconst6.1
Assertion
Ref Expression
fconst6

Proof of Theorem fconst6
StepHypRef Expression
1 fconst6.1 . 2
2 fconst6g 5779 . 2
31, 2ax-mp 5 1
 Colors of variables: wff setvar class Syntax hints:  e.wcel 1818  {csn 4029  X.cxp 5002  -->wf 5589 This theorem is referenced by:  ramz  14543  psrlidm  18056  psrlidmOLD  18057  psrridmOLD  18059  psrbag0  18159  00ply1bas  18281  ply1plusgfvi  18283  mbfpos  22058  i1f0  22094  axlowdimlem1  24245  axlowdimlem7  24251  axlowdim1  24262  hlim0  26153  0cnfn  26899  0lnfn  26904  noxpsgn  29425  expgrowth  31240 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-mpt 4512  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-fun 5595  df-fn 5596  df-f 5597
 Copyright terms: Public domain W3C validator