![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fconstfv | Unicode version |
Description: A constant function expressed in terms of its functionality, domain, and value. See also fconst2 6127. (Contributed by NM, 27-Aug-2004.) (Proof shortened by OpenAI, 25-Mar-2020.) |
Ref | Expression |
---|---|
fconstfv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffnfv 6057 | . 2 | |
2 | fvex 5881 | . . . . 5 | |
3 | 2 | elsnc 4053 | . . . 4 |
4 | 3 | ralbii 2888 | . . 3 |
5 | 4 | anbi2i 694 | . 2 |
6 | 1, 5 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
= wceq 1395 e. wcel 1818 A. wral 2807
{ csn 4029 Fn wfn 5588 --> wf 5589
` cfv 5593 |
This theorem is referenced by: fconst3 6135 repsdf2 12750 rrxcph 21824 lnon0 25713 df0op2 26671 lfl1 34795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 |
Copyright terms: Public domain | W3C validator |