![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fconstfvOLD | Unicode version |
Description: A constant function expressed in terms of its functionality, domain, and value. See also fconst2 6127. (Contributed by NM, 27-Aug-2004.) Obsolete version of fconstfv 6133 as of 25-Mar-2020. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
fconstfvOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5736 | . . 3 | |
2 | fvconst 6089 | . . . 4 | |
3 | 2 | ralrimiva 2871 | . . 3 |
4 | 1, 3 | jca 532 | . 2 |
5 | fneq2 5675 | . . . . . . 7 | |
6 | fn0 5705 | . . . . . . 7 | |
7 | 5, 6 | syl6bb 261 | . . . . . 6 |
8 | f0 5771 | . . . . . . 7 | |
9 | feq1 5718 | . . . . . . 7 | |
10 | 8, 9 | mpbiri 233 | . . . . . 6 |
11 | 7, 10 | syl6bi 228 | . . . . 5 |
12 | feq2 5719 | . . . . 5 | |
13 | 11, 12 | sylibrd 234 | . . . 4 |
14 | 13 | adantrd 468 | . . 3 |
15 | fvelrnb 5920 | . . . . . . . . . 10 | |
16 | fveq2 5871 | . . . . . . . . . . . . . . 15 | |
17 | 16 | eqeq1d 2459 | . . . . . . . . . . . . . 14 |
18 | 17 | rspccva 3209 | . . . . . . . . . . . . 13 |
19 | 18 | eqeq1d 2459 | . . . . . . . . . . . 12 |
20 | 19 | rexbidva 2965 | . . . . . . . . . . 11 |
21 | r19.9rzv 3923 | . . . . . . . . . . . 12 | |
22 | 21 | bicomd 201 | . . . . . . . . . . 11 |
23 | 20, 22 | sylan9bbr 700 | . . . . . . . . . 10 |
24 | 15, 23 | sylan9bbr 700 | . . . . . . . . 9 |
25 | elsn 4043 | . . . . . . . . . 10 | |
26 | eqcom 2466 | . . . . . . . . . 10 | |
27 | 25, 26 | bitr2i 250 | . . . . . . . . 9 |
28 | 24, 27 | syl6bb 261 | . . . . . . . 8 |
29 | 28 | eqrdv 2454 | . . . . . . 7 |
30 | 29 | an32s 804 | . . . . . 6 |
31 | 30 | exp31 604 | . . . . 5 |
32 | 31 | imdistand 692 | . . . 4 |
33 | df-fo 5599 | . . . . 5 | |
34 | fof 5800 | . . . . 5 | |
35 | 33, 34 | sylbir 213 | . . . 4 |
36 | 32, 35 | syl6 33 | . . 3 |
37 | 14, 36 | pm2.61ine 2770 | . 2 |
38 | 4, 37 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 A. wral 2807 E. wrex 2808
c0 3784 { csn 4029 ran crn 5005
Fn wfn 5588 --> wf 5589 -onto-> wfo 5591 ` cfv 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fo 5599 df-fv 5601 |
Copyright terms: Public domain | W3C validator |