Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  felapton Unicode version

Theorem felapton 2412
 Description: "Felapton", one of the syllogisms of Aristotelian logic. No is , all is , and some exist, therefore some is not . (In Aristotelian notation, EAO-3: MeP and MaS therefore SoP.) For example, "No flowers are animals" and "All flowers are plants", therefore "Some plants are not animals". (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
felapton.maj
felapton.min
felapton.e
Assertion
Ref Expression
felapton

Proof of Theorem felapton
StepHypRef Expression
1 felapton.e . 2
2 felapton.min . . . 4
32spi 1864 . . 3
4 felapton.maj . . . 4
54spi 1864 . . 3
63, 5jca 532 . 2
71, 6eximii 1658 1
 Colors of variables: wff setvar class Syntax hints:  -.wn 3  ->wi 4  /\wa 369  A.wal 1393  E.wex 1612 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854 This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613
 Copyright terms: Public domain W3C validator