MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq12d Unicode version

Theorem feq12d 5725
Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
feq12d.1
feq12d.2
Assertion
Ref Expression
feq12d

Proof of Theorem feq12d
StepHypRef Expression
1 feq12d.1 . . 3
21feq1d 5722 . 2
3 feq12d.2 . . 3
43feq2d 5723 . 2
52, 4bitrd 253 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  =wceq 1395  -->wf 5589
This theorem is referenced by:  feq123d  5726  fprg  6080  smoeq  7040  oif  7976  catcisolem  15433  hofcl  15528  dmdprd  17029  dpjf  17106  pjf2  18745  mat1dimmul  18978  lmbr2  19760  lmff  19802  dfac14  20119  lmmbr2  21698  lmcau  21751  perfdvf  22307  dvnfre  22355  dvle  22408  dvfsumle  22422  dvfsumge  22423  dvmptrecl  22425  uhgrac  24305  isumgra  24315  iswlk  24520  istrl  24539  constr1trl  24590  constr3trllem1  24650  eupap1  24976  resf1o  27553  ismeas  28170  mbfresfi  30061  sdclem1  30236  dfac21  31012  fourierdlem74  31963  fourierdlem103  31992  fourierdlem104  31993  uhg0e  32376  uhgrepe  32378  uhgres  32379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-fun 5595  df-fn 5596  df-f 5597
  Copyright terms: Public domain W3C validator