MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  festino Unicode version

Theorem festino 2404
Description: "Festino", one of the syllogisms of Aristotelian logic. No is , and some is , therefore some is not . (In Aristotelian notation, EIO-2: PeM and SiM therefore SoP.) (Contributed by David A. Wheeler, 25-Nov-2016.)
Hypotheses
Ref Expression
festino.maj
festino.min
Assertion
Ref Expression
festino

Proof of Theorem festino
StepHypRef Expression
1 festino.min . 2
2 festino.maj . . . . 5
32spi 1864 . . . 4
43con2i 120 . . 3
54anim2i 569 . 2
61, 5eximii 1658 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  /\wa 369  A.wal 1393  E.wex 1612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613
  Copyright terms: Public domain W3C validator