![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ffvresb | Unicode version |
Description: A necessary and sufficient condition for a restricted function. (Contributed by Mario Carneiro, 14-Nov-2013.) |
Ref | Expression |
---|---|
ffvresb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm 5740 | . . . . . 6 | |
2 | dmres 5299 | . . . . . . 7 | |
3 | inss2 3718 | . . . . . . 7 | |
4 | 2, 3 | eqsstri 3533 | . . . . . 6 |
5 | 1, 4 | syl6eqssr 3554 | . . . . 5 |
6 | 5 | sselda 3503 | . . . 4 |
7 | fvres 5885 | . . . . . 6 | |
8 | 7 | adantl 466 | . . . . 5 |
9 | ffvelrn 6029 | . . . . 5 | |
10 | 8, 9 | eqeltrrd 2546 | . . . 4 |
11 | 6, 10 | jca 532 | . . 3 |
12 | 11 | ralrimiva 2871 | . 2 |
13 | simpl 457 | . . . . . . 7 | |
14 | 13 | ralimi 2850 | . . . . . 6 |
15 | dfss3 3493 | . . . . . 6 | |
16 | 14, 15 | sylibr 212 | . . . . 5 |
17 | funfn 5622 | . . . . . 6 | |
18 | fnssres 5699 | . . . . . 6 | |
19 | 17, 18 | sylanb 472 | . . . . 5 |
20 | 16, 19 | sylan2 474 | . . . 4 |
21 | simpr 461 | . . . . . . . 8 | |
22 | 7 | eleq1d 2526 | . . . . . . . 8 |
23 | 21, 22 | syl5ibr 221 | . . . . . . 7 |
24 | 23 | ralimia 2848 | . . . . . 6 |
25 | 24 | adantl 466 | . . . . 5 |
26 | fnfvrnss 6059 | . . . . 5 | |
27 | 20, 25, 26 | syl2anc 661 | . . . 4 |
28 | df-f 5597 | . . . 4 | |
29 | 20, 27, 28 | sylanbrc 664 | . . 3 |
30 | 29 | ex 434 | . 2 |
31 | 12, 30 | impbid2 204 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 i^i cin 3474 C_ wss 3475
dom cdm 5004 ran crn 5005 |` cres 5006
Fun wfun 5587
Fn wfn 5588 --> wf 5589 ` cfv 5593 |
This theorem is referenced by: lmbr2 19760 lmff 19802 lmmbr2 21698 iscau2 21716 sseqf 28331 fourierdlem97 31986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 |
Copyright terms: Public domain | W3C validator |