![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fiin | Unicode version |
Description: The elements of are closed under finite intersection. (Contributed by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
fiin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 5898 | . . . . . 6 | |
2 | elfi 7893 | . . . . . 6 | |
3 | 1, 2 | mpdan 668 | . . . . 5 |
4 | 3 | ibi 241 | . . . 4 |
5 | 4 | adantr 465 | . . 3 |
6 | simpr 461 | . . . 4 | |
7 | elfi 7893 | . . . . . 6 | |
8 | 7 | ancoms 453 | . . . . 5 |
9 | 1, 8 | sylan 471 | . . . 4 |
10 | 6, 9 | mpbid 210 | . . 3 |
11 | elin 3686 | . . . . . . . . 9 | |
12 | elin 3686 | . . . . . . . . 9 | |
13 | elpwi 4021 | . . . . . . . . . . . . . 14 | |
14 | elpwi 4021 | . . . . . . . . . . . . . 14 | |
15 | 13, 14 | anim12i 566 | . . . . . . . . . . . . 13 |
16 | unss 3677 | . . . . . . . . . . . . 13 | |
17 | 15, 16 | sylib 196 | . . . . . . . . . . . 12 |
18 | vex 3112 | . . . . . . . . . . . . . 14 | |
19 | vex 3112 | . . . . . . . . . . . . . 14 | |
20 | 18, 19 | unex 6598 | . . . . . . . . . . . . 13 |
21 | 20 | elpw 4018 | . . . . . . . . . . . 12 |
22 | 17, 21 | sylibr 212 | . . . . . . . . . . 11 |
23 | unfi 7807 | . . . . . . . . . . 11 | |
24 | 22, 23 | anim12i 566 | . . . . . . . . . 10 |
25 | 24 | an4s 826 | . . . . . . . . 9 |
26 | 11, 12, 25 | syl2anb 479 | . . . . . . . 8 |
27 | elin 3686 | . . . . . . . 8 | |
28 | 26, 27 | sylibr 212 | . . . . . . 7 |
29 | ineq12 3694 | . . . . . . . 8 | |
30 | intun 4319 | . . . . . . . 8 | |
31 | 29, 30 | syl6eqr 2516 | . . . . . . 7 |
32 | inteq 4289 | . . . . . . . . 9 | |
33 | 32 | eqeq2d 2471 | . . . . . . . 8 |
34 | 33 | rspcev 3210 | . . . . . . 7 |
35 | 28, 31, 34 | syl2an 477 | . . . . . 6 |
36 | 35 | an4s 826 | . . . . 5 |
37 | 36 | rexlimdvaa 2950 | . . . 4 |
38 | 37 | rexlimiva 2945 | . . 3 |
39 | 5, 10, 38 | sylc 60 | . 2 |
40 | inex1g 4595 | . . . 4 | |
41 | elfi 7893 | . . . 4 | |
42 | 40, 1, 41 | syl2anc 661 | . . 3 |
43 | 42 | adantr 465 | . 2 |
44 | 39, 43 | mpbird 232 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
E. wrex 2808 cvv 3109
u. cun 3473 i^i cin 3474 C_ wss 3475
~P cpw 4012 |^| cint 4286 ` cfv 5593
cfn 7536 cfi 7890 |
This theorem is referenced by: dffi2 7903 inficl 7905 elfiun 7910 dffi3 7911 fibas 19479 ordtbas2 19692 fsubbas 20368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-oadd 7153 df-er 7330 df-en 7537 df-fin 7540 df-fi 7891 |
Copyright terms: Public domain | W3C validator |