![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fimaxg | Unicode version |
Description: A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
Ref | Expression |
---|---|
fimaxg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fimax2g 7786 | . 2 | |
2 | df-ne 2654 | . . . . . . . . 9 | |
3 | 2 | imbi1i 325 | . . . . . . . 8 |
4 | pm4.64 372 | . . . . . . . 8 | |
5 | 3, 4 | bitri 249 | . . . . . . 7 |
6 | sotric 4831 | . . . . . . . 8 | |
7 | 6 | con2bid 329 | . . . . . . 7 |
8 | 5, 7 | syl5bb 257 | . . . . . 6 |
9 | 8 | anassrs 648 | . . . . 5 |
10 | 9 | ralbidva 2893 | . . . 4 |
11 | 10 | rexbidva 2965 | . . 3 |
12 | 11 | 3ad2ant1 1017 | . 2 |
13 | 1, 12 | mpbird 232 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
/\ w3a 973 e. wcel 1818 =/= wne 2652
A. wral 2807 E. wrex 2808 c0 3784 class class class wbr 4452
Or wor 4804 cfn 7536 |
This theorem is referenced by: fisupg 7788 fimaxre 10515 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-1o 7149 df-er 7330 df-en 7537 df-fin 7540 |
Copyright terms: Public domain | W3C validator |