![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fin | Unicode version |
Description: Mapping into an intersection. (Contributed by NM, 14-Sep-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssin 3719 | . . . 4 | |
2 | 1 | anbi2i 694 | . . 3 |
3 | anandi 828 | . . 3 | |
4 | 2, 3 | bitr3i 251 | . 2 |
5 | df-f 5597 | . 2 | |
6 | df-f 5597 | . . 3 | |
7 | df-f 5597 | . . 3 | |
8 | 6, 7 | anbi12i 697 | . 2 |
9 | 4, 5, 8 | 3bitr4i 277 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
i^i cin 3474 C_ wss 3475 ran crn 5005
Fn wfn 5588 --> wf 5589 |
This theorem is referenced by: maprnin 27554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-in 3482 df-ss 3489 df-f 5597 |
Copyright terms: Public domain | W3C validator |