![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fin12 | Unicode version |
Description: Weak theorem which skips Ia but has a trivial proof, needed to prove fin1a2 8816. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
fin12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3112 | . . . . . . . 8 | |
2 | 1 | a1i 11 | . . . . . . 7 |
3 | isfin1-3 8787 | . . . . . . . . 9 | |
4 | 3 | ibi 241 | . . . . . . . 8 |
5 | 4 | ad2antrr 725 | . . . . . . 7 |
6 | elpwi 4021 | . . . . . . . 8 | |
7 | 6 | ad2antlr 726 | . . . . . . 7 |
8 | simprl 756 | . . . . . . 7 | |
9 | fri 4846 | . . . . . . 7 | |
10 | 2, 5, 7, 8, 9 | syl22anc 1229 | . . . . . 6 |
11 | vex 3112 | . . . . . . . . . . 11 | |
12 | vex 3112 | . . . . . . . . . . 11 | |
13 | 11, 12 | brcnv 5190 | . . . . . . . . . 10 |
14 | 11 | brrpss 6583 | . . . . . . . . . 10 |
15 | 13, 14 | bitri 249 | . . . . . . . . 9 |
16 | 15 | notbii 296 | . . . . . . . 8 |
17 | 16 | ralbii 2888 | . . . . . . 7 |
18 | 17 | rexbii 2959 | . . . . . 6 |
19 | 10, 18 | sylib 196 | . . . . 5 |
20 | sorpssuni 6589 | . . . . . 6 | |
21 | 20 | ad2antll 728 | . . . . 5 |
22 | 19, 21 | mpbid 210 | . . . 4 |
23 | 22 | ex 434 | . . 3 |
24 | 23 | ralrimiva 2871 | . 2 |
25 | isfin2 8695 | . 2 | |
26 | 24, 25 | mpbird 232 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 e. wcel 1818
=/= wne 2652 A. wral 2807 E. wrex 2808
cvv 3109
C_ wss 3475 C. wpss 3476 c0 3784 ~P cpw 4012 U. cuni 4249
class class class wbr 4452 Or wor 4804
Fr wfr 4840 `' ccnv 5003 crpss 6579 cfn 7536 cfin2 8680 |
This theorem is referenced by: fin1a2s 8815 fin1a2 8816 finngch 9054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-rpss 6580 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-fin2 8687 |
Copyright terms: Public domain | W3C validator |