![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fin1a2lem9 | Unicode version |
Description: Lemma for fin1a2 8816. In a chain of finite sets, initial segments are finite. (Contributed by Stefan O'Rear, 8-Nov-2014.) |
Ref | Expression |
---|---|
fin1a2lem9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onfin2 7729 | . . . . 5 | |
2 | inss2 3718 | . . . . 5 | |
3 | 1, 2 | eqsstri 3533 | . . . 4 |
4 | peano2 6720 | . . . 4 | |
5 | 3, 4 | sseldi 3501 | . . 3 |
6 | 5 | 3ad2ant3 1019 | . 2 |
7 | 4 | 3ad2ant3 1019 | . . 3 |
8 | breq1 4455 | . . . . . 6 | |
9 | 8 | elrab 3257 | . . . . 5 |
10 | simprr 757 | . . . . . . . 8 | |
11 | simpl2 1000 | . . . . . . . . . . 11 | |
12 | simprl 756 | . . . . . . . . . . 11 | |
13 | 11, 12 | sseldd 3504 | . . . . . . . . . 10 |
14 | finnum 8350 | . . . . . . . . . 10 | |
15 | 13, 14 | syl 16 | . . . . . . . . 9 |
16 | simpl3 1001 | . . . . . . . . . . 11 | |
17 | 3, 16 | sseldi 3501 | . . . . . . . . . 10 |
18 | finnum 8350 | . . . . . . . . . 10 | |
19 | 17, 18 | syl 16 | . . . . . . . . 9 |
20 | carddom2 8379 | . . . . . . . . 9 | |
21 | 15, 19, 20 | syl2anc 661 | . . . . . . . 8 |
22 | 10, 21 | mpbird 232 | . . . . . . 7 |
23 | 22 | ex 434 | . . . . . 6 |
24 | cardnn 8365 | . . . . . . . . 9 | |
25 | 24 | sseq2d 3531 | . . . . . . . 8 |
26 | cardon 8346 | . . . . . . . . 9 | |
27 | nnon 6706 | . . . . . . . . 9 | |
28 | onsssuc 4970 | . . . . . . . . 9 | |
29 | 26, 27, 28 | sylancr 663 | . . . . . . . 8 |
30 | 25, 29 | bitrd 253 | . . . . . . 7 |
31 | 30 | 3ad2ant3 1019 | . . . . . 6 |
32 | 23, 31 | sylibd 214 | . . . . 5 |
33 | 9, 32 | syl5bi 217 | . . . 4 |
34 | elrabi 3254 | . . . . 5 | |
35 | elrabi 3254 | . . . . 5 | |
36 | ssel 3497 | . . . . . . . . . . 11 | |
37 | ssel 3497 | . . . . . . . . . . 11 | |
38 | 36, 37 | anim12d 563 | . . . . . . . . . 10 |
39 | 38 | imp 429 | . . . . . . . . 9 |
40 | 39 | 3ad2antl2 1159 | . . . . . . . 8 |
41 | sorpssi 6586 | . . . . . . . . 9 | |
42 | 41 | 3ad2antl1 1158 | . . . . . . . 8 |
43 | finnum 8350 | . . . . . . . . . . 11 | |
44 | carden2 8389 | . . . . . . . . . . 11 | |
45 | 14, 43, 44 | syl2an 477 | . . . . . . . . . 10 |
46 | 45 | adantr 465 | . . . . . . . . 9 |
47 | fin23lem25 8725 | . . . . . . . . . . 11 | |
48 | 47 | 3expa 1196 | . . . . . . . . . 10 |
49 | 48 | biimpd 207 | . . . . . . . . 9 |
50 | 46, 49 | sylbid 215 | . . . . . . . 8 |
51 | 40, 42, 50 | syl2anc 661 | . . . . . . 7 |
52 | fveq2 5871 | . . . . . . 7 | |
53 | 51, 52 | impbid1 203 | . . . . . 6 |
54 | 53 | ex 434 | . . . . 5 |
55 | 34, 35, 54 | syl2ani 656 | . . . 4 |
56 | 33, 55 | dom2d 7576 | . . 3 |
57 | 7, 56 | mpd 15 | . 2 |
58 | domfi 7761 | . 2 | |
59 | 6, 57, 58 | syl2anc 661 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
\/ wo 368 /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 { crab 2811
i^i cin 3474 C_ wss 3475 class class class wbr 4452
Or wor 4804 con0 4883 suc csuc 4885 dom cdm 5004
` cfv 5593 crpss 6579 com 6700
cen 7533 cdom 7534 cfn 7536 ccrd 8337 |
This theorem is referenced by: fin1a2lem11 8811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-rpss 6580 df-om 6701 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-card 8341 |
Copyright terms: Public domain | W3C validator |