![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fin23lem14 | Unicode version |
Description: Lemma for fin23 8790. will never evolve to an empty set if it did not start with one. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
Ref | Expression |
---|---|
fin23lem.a |
Ref | Expression |
---|---|
fin23lem14 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5871 | . . . . 5 | |
2 | 1 | neeq1d 2734 | . . . 4 |
3 | 2 | imbi2d 316 | . . 3 |
4 | fveq2 5871 | . . . . 5 | |
5 | 4 | neeq1d 2734 | . . . 4 |
6 | 5 | imbi2d 316 | . . 3 |
7 | fveq2 5871 | . . . . 5 | |
8 | 7 | neeq1d 2734 | . . . 4 |
9 | 8 | imbi2d 316 | . . 3 |
10 | fveq2 5871 | . . . . 5 | |
11 | 10 | neeq1d 2734 | . . . 4 |
12 | 11 | imbi2d 316 | . . 3 |
13 | vex 3112 | . . . . . . 7 | |
14 | 13 | rnex 6734 | . . . . . 6 |
15 | 14 | uniex 6596 | . . . . 5 |
16 | fin23lem.a | . . . . . 6 | |
17 | 16 | seqom0g 7140 | . . . . 5 |
18 | 15, 17 | mp1i 12 | . . . 4 |
19 | id 22 | . . . 4 | |
20 | 18, 19 | eqnetrd 2750 | . . 3 |
21 | 16 | fin23lem12 8732 | . . . . . . 7 |
22 | 21 | adantr 465 | . . . . . 6 |
23 | iftrue 3947 | . . . . . . . . 9 | |
24 | 23 | adantr 465 | . . . . . . . 8 |
25 | simprr 757 | . . . . . . . 8 | |
26 | 24, 25 | eqnetrd 2750 | . . . . . . 7 |
27 | iffalse 3950 | . . . . . . . . 9 | |
28 | 27 | adantr 465 | . . . . . . . 8 |
29 | df-ne 2654 | . . . . . . . . . 10 | |
30 | 29 | biimpri 206 | . . . . . . . . 9 |
31 | 30 | adantr 465 | . . . . . . . 8 |
32 | 28, 31 | eqnetrd 2750 | . . . . . . 7 |
33 | 26, 32 | pm2.61ian 790 | . . . . . 6 |
34 | 22, 33 | eqnetrd 2750 | . . . . 5 |
35 | 34 | ex 434 | . . . 4 |
36 | 35 | imim2d 52 | . . 3 |
37 | 3, 6, 9, 12, 20, 36 | finds 6726 | . 2 |
38 | 37 | imp 429 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 cvv 3109
i^i cin 3474 c0 3784 if cif 3941 U. cuni 4249
suc csuc 4885
ran crn 5005 ` cfv 5593 e. cmpt2 6298 com 6700
seqom cseqom 7131 |
This theorem is referenced by: fin23lem21 8740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-2nd 6801 df-recs 7061 df-rdg 7095 df-seqom 7132 |
Copyright terms: Public domain | W3C validator |