![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fin23lem21 | Unicode version |
Description: Lemma for fin23 8790. is not empty. We only need here that has at least one set in its range besides ; the much stronger hypothesis here will serve as our induction hypothesis though. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
fin23lem.a | |
fin23lem17.f |
Ref | Expression |
---|---|
fin23lem21 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin23lem.a | . . 3 | |
2 | fin23lem17.f | . . 3 | |
3 | 1, 2 | fin23lem17 8739 | . 2 |
4 | 1 | fnseqom 7139 | . . . . 5 |
5 | fvelrnb 5920 | . . . . 5 | |
6 | 4, 5 | ax-mp 5 | . . . 4 |
7 | id 22 | . . . . . . 7 | |
8 | vex 3112 | . . . . . . . . . 10 | |
9 | f1f1orn 5832 | . . . . . . . . . 10 | |
10 | f1oen3g 7551 | . . . . . . . . . 10 | |
11 | 8, 9, 10 | sylancr 663 | . . . . . . . . 9 |
12 | ominf 7752 | . . . . . . . . 9 | |
13 | ssdif0 3885 | . . . . . . . . . . 11 | |
14 | snfi 7616 | . . . . . . . . . . . . 13 | |
15 | ssfi 7760 | . . . . . . . . . . . . 13 | |
16 | 14, 15 | mpan 670 | . . . . . . . . . . . 12 |
17 | enfi 7756 | . . . . . . . . . . . 12 | |
18 | 16, 17 | syl5ibr 221 | . . . . . . . . . . 11 |
19 | 13, 18 | syl5bir 218 | . . . . . . . . . 10 |
20 | 19 | necon3bd 2669 | . . . . . . . . 9 |
21 | 11, 12, 20 | mpisyl 18 | . . . . . . . 8 |
22 | n0 3794 | . . . . . . . . 9 | |
23 | eldifsn 4155 | . . . . . . . . . . 11 | |
24 | elssuni 4279 | . . . . . . . . . . . 12 | |
25 | ssn0 3818 | . . . . . . . . . . . 12 | |
26 | 24, 25 | sylan 471 | . . . . . . . . . . 11 |
27 | 23, 26 | sylbi 195 | . . . . . . . . . 10 |
28 | 27 | exlimiv 1722 | . . . . . . . . 9 |
29 | 22, 28 | sylbi 195 | . . . . . . . 8 |
30 | 21, 29 | syl 16 | . . . . . . 7 |
31 | 1 | fin23lem14 8734 | . . . . . . 7 |
32 | 7, 30, 31 | syl2anr 478 | . . . . . 6 |
33 | neeq1 2738 | . . . . . 6 | |
34 | 32, 33 | syl5ibcom 220 | . . . . 5 |
35 | 34 | rexlimdva 2949 | . . . 4 |
36 | 6, 35 | syl5bi 217 | . . 3 |
37 | 36 | adantl 466 | . 2 |
38 | 3, 37 | mpd 15 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
E. wex 1612 e. wcel 1818 { cab 2442
=/= wne 2652 A. wral 2807 E. wrex 2808
cvv 3109
\ cdif 3472 i^i cin 3474 C_ wss 3475
c0 3784 if cif 3941 ~P cpw 4012
{ csn 4029 U. cuni 4249 |^| cint 4286
class class class wbr 4452 suc csuc 4885
ran crn 5005 Fn wfn 5588 -1-1-> wf1 5590 -1-1-onto-> wf1o 5592 ` cfv 5593 (class class class)co 6296
e. cmpt2 6298 com 6700
seqom cseqom 7131 cmap 7439
cen 7533 cfn 7536 |
This theorem is referenced by: fin23lem31 8744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-2nd 6801 df-recs 7061 df-rdg 7095 df-seqom 7132 df-1o 7149 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 |
Copyright terms: Public domain | W3C validator |