![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fin23lem22 | Unicode version |
Description: Lemma for fin23 8790 but could be used elsewhere if we find a good name for it. Explicit construction of a bijection (actually an isomorphism, see fin23lem27 8729) between an infinite subset of and itself. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
Ref | Expression |
---|---|
fin23lem22.b |
Ref | Expression |
---|---|
fin23lem22 |
S
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin23lem22.b | . 2 | |
2 | fin23lem23 8727 | . . 3 | |
3 | riotacl 6272 | . . 3 | |
4 | 2, 3 | syl 16 | . 2 |
5 | simpll 753 | . . . 4 | |
6 | simpr 461 | . . . 4 | |
7 | 5, 6 | sseldd 3504 | . . 3 |
8 | nnfi 7730 | . . 3 | |
9 | infi 7763 | . . 3 | |
10 | ficardom 8363 | . . 3 | |
11 | 7, 8, 9, 10 | 4syl 21 | . 2 |
12 | cardnn 8365 | . . . . . . 7 | |
13 | 12 | eqcomd 2465 | . . . . . 6 |
14 | 13 | eqeq1d 2459 | . . . . 5 |
15 | eqcom 2466 | . . . . 5 | |
16 | 14, 15 | syl6bb 261 | . . . 4 |
17 | 16 | ad2antrl 727 | . . 3 |
18 | simpll 753 | . . . . . . 7 | |
19 | simprr 757 | . . . . . . 7 | |
20 | 18, 19 | sseldd 3504 | . . . . . 6 |
21 | nnon 6706 | . . . . . 6 | |
22 | onenon 8351 | . . . . . 6 | |
23 | 20, 21, 22 | 3syl 20 | . . . . 5 |
24 | inss1 3717 | . . . . 5 | |
25 | ssnum 8441 | . . . . 5 | |
26 | 23, 24, 25 | sylancl 662 | . . . 4 |
27 | nnon 6706 | . . . . . 6 | |
28 | 27 | ad2antrl 727 | . . . . 5 |
29 | onenon 8351 | . . . . 5 | |
30 | 28, 29 | syl 16 | . . . 4 |
31 | carden2 8389 | . . . 4 | |
32 | 26, 30, 31 | syl2anc 661 | . . 3 |
33 | 2 | adantrr 716 | . . . . 5 |
34 | ineq1 3692 | . . . . . . 7 | |
35 | 34 | breq1d 4462 | . . . . . 6 |
36 | 35 | riota2 6280 | . . . . 5 |
37 | 19, 33, 36 | syl2anc 661 | . . . 4 |
38 | eqcom 2466 | . . . 4 | |
39 | 37, 38 | syl6bb 261 | . . 3 |
40 | 17, 32, 39 | 3bitrd 279 | . 2 |
41 | 1, 4, 11, 40 | f1o2d 6527 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 E! wreu 2809 i^i cin 3474
C_ wss 3475 class class class wbr 4452
e. cmpt 4510 con0 4883 dom cdm 5004 -1-1-onto-> wf1o 5592 ` cfv 5593 iota_ crio 6256
com 6700
cen 7533 cfn 7536 ccrd 8337 |
This theorem is referenced by: fin23lem27 8729 fin23lem28 8741 fin23lem30 8743 isf32lem6 8759 isf32lem7 8760 isf32lem8 8761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-om 6701 df-recs 7061 df-1o 7149 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-card 8341 |
Copyright terms: Public domain | W3C validator |