![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fin23lem31 | Unicode version |
Description: Lemma for fin23 8790. The residual is has a strictly smaller range than the previous sequence. This will be iterated to build an unbounded chain. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
Ref | Expression |
---|---|
fin23lem.a | |
fin23lem17.f | |
fin23lem.b | |
fin23lem.c | |
fin23lem.d | |
fin23lem.e |
Ref | Expression |
---|---|
fin23lem31 |
P
,,,, ,,,,, , ,,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin23lem17.f | . . . 4 | |
2 | 1 | ssfin3ds 8731 | . . 3 |
3 | fin23lem.a | . . . . . 6 | |
4 | fin23lem.b | . . . . . 6 | |
5 | fin23lem.c | . . . . . 6 | |
6 | fin23lem.d | . . . . . 6 | |
7 | fin23lem.e | . . . . . 6 | |
8 | 3, 1, 4, 5, 6, 7 | fin23lem29 8742 | . . . . 5 |
9 | 8 | a1i 11 | . . . 4 |
10 | 3, 1 | fin23lem21 8740 | . . . . . . 7 |
11 | 10 | ancoms 453 | . . . . . 6 |
12 | n0 3794 | . . . . . 6 | |
13 | 11, 12 | sylib 196 | . . . . 5 |
14 | 3 | fnseqom 7139 | . . . . . . . . . . . . . 14 |
15 | fndm 5685 | . . . . . . . . . . . . . 14 | |
16 | 14, 15 | ax-mp 5 | . . . . . . . . . . . . 13 |
17 | peano1 6719 | . . . . . . . . . . . . . 14 | |
18 | 17 | ne0ii 3791 | . . . . . . . . . . . . 13 |
19 | 16, 18 | eqnetri 2753 | . . . . . . . . . . . 12 |
20 | dm0rn0 5224 | . . . . . . . . . . . . 13 | |
21 | 20 | necon3bii 2725 | . . . . . . . . . . . 12 |
22 | 19, 21 | mpbi 208 | . . . . . . . . . . 11 |
23 | intssuni 4309 | . . . . . . . . . . 11 | |
24 | 22, 23 | ax-mp 5 | . . . . . . . . . 10 |
25 | 3 | fin23lem16 8736 | . . . . . . . . . 10 |
26 | 24, 25 | sseqtri 3535 | . . . . . . . . 9 |
27 | 26 | sseli 3499 | . . . . . . . 8 |
28 | 27 | adantl 466 | . . . . . . 7 |
29 | f1fun 5788 | . . . . . . . . . . . . 13 | |
30 | 29 | adantr 465 | . . . . . . . . . . . 12 |
31 | 3, 1, 4, 5, 6, 7 | fin23lem30 8743 | . . . . . . . . . . . 12 |
32 | 30, 31 | syl 16 | . . . . . . . . . . 11 |
33 | disj 3867 | . . . . . . . . . . 11 | |
34 | 32, 33 | sylib 196 | . . . . . . . . . 10 |
35 | rsp 2823 | . . . . . . . . . 10 | |
36 | 34, 35 | syl 16 | . . . . . . . . 9 |
37 | 36 | con2d 115 | . . . . . . . 8 |
38 | 37 | imp 429 | . . . . . . 7 |
39 | nelne1 2786 | . . . . . . 7 | |
40 | 28, 38, 39 | syl2anc 661 | . . . . . 6 |
41 | 40 | necomd 2728 | . . . . 5 |
42 | 13, 41 | exlimddv 1726 | . . . 4 |
43 | df-pss 3491 | . . . 4 | |
44 | 9, 42, 43 | sylanbrc 664 | . . 3 |
45 | 2, 44 | sylan2 474 | . 2 |
46 | 45 | 3impb 1192 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 /\ w3a 973 = wceq 1395
E. wex 1612 e. wcel 1818 { cab 2442
=/= wne 2652 A. wral 2807 { crab 2811
cvv 3109
\ cdif 3472 i^i cin 3474 C_ wss 3475
C. wpss 3476 c0 3784 if cif 3941 ~P cpw 4012
U. cuni 4249 |^| cint 4286 class class class wbr 4452
e. cmpt 4510 suc csuc 4885 dom cdm 5004
ran crn 5005 o. ccom 5008 Fun wfun 5587
Fn wfn 5588 -1-1-> wf1 5590 ` cfv 5593
iota_ crio 6256
(class class class)co 6296 e. cmpt2 6298 com 6700
seqom cseqom 7131 cmap 7439
cen 7533 cfn 7536 |
This theorem is referenced by: fin23lem32 8745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-seqom 7132 df-1o 7149 df-oadd 7153 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-card 8341 |
Copyright terms: Public domain | W3C validator |