Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin2inf Unicode version

Theorem fin2inf 7803
 Description: This (useless) theorem, which was proved without the Axiom of Infinity, demonstrates an artifact of our definition of binary relation, which is meaningful only when its arguments exist. In particular, the antecedent cannot be satisfied unless exists. (Contributed by NM, 13-Nov-2003.)
Assertion
Ref Expression
fin2inf

Proof of Theorem fin2inf
StepHypRef Expression
1 relsdom 7543 . 2
21brrelex2i 5046 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  e.wcel 1818   cvv 3109   class class class wbr 4452   com 6700   csdm 7535 This theorem is referenced by:  unfi2  7809  unifi2  7830 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-xp 5010  df-rel 5011  df-dom 7538  df-sdom 7539
 Copyright terms: Public domain W3C validator