![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fin4en1 | Unicode version |
Description: Dedekind finite is a cardinal property. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.) |
Ref | Expression |
---|---|
fin4en1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensym 7584 | . 2 | |
2 | bren 7545 | . . . 4 | |
3 | simpr 461 | . . . . . . . . . . . 12 | |
4 | f1of1 5820 | . . . . . . . . . . . . 13 | |
5 | pssss 3598 | . . . . . . . . . . . . . 14 | |
6 | ssid 3522 | . . . . . . . . . . . . . 14 | |
7 | 5, 6 | jctir 538 | . . . . . . . . . . . . 13 |
8 | f1imapss 6174 | . . . . . . . . . . . . 13 | |
9 | 4, 7, 8 | syl2an 477 | . . . . . . . . . . . 12 |
10 | 3, 9 | mpbird 232 | . . . . . . . . . . 11 |
11 | imadmrn 5352 | . . . . . . . . . . . . . 14 | |
12 | f1odm 5825 | . . . . . . . . . . . . . . 15 | |
13 | 12 | imaeq2d 5342 | . . . . . . . . . . . . . 14 |
14 | dff1o5 5830 | . . . . . . . . . . . . . . 15 | |
15 | 14 | simprbi 464 | . . . . . . . . . . . . . 14 |
16 | 11, 13, 15 | 3eqtr3a 2522 | . . . . . . . . . . . . 13 |
17 | 16 | adantr 465 | . . . . . . . . . . . 12 |
18 | 17 | psseq2d 3596 | . . . . . . . . . . 11 |
19 | 10, 18 | mpbid 210 | . . . . . . . . . 10 |
20 | 19 | adantrr 716 | . . . . . . . . 9 |
21 | vex 3112 | . . . . . . . . . . . . . 14 | |
22 | 21 | f1imaen 7597 | . . . . . . . . . . . . 13 |
23 | 4, 5, 22 | syl2an 477 | . . . . . . . . . . . 12 |
24 | 23 | adantrr 716 | . . . . . . . . . . 11 |
25 | simprr 757 | . . . . . . . . . . 11 | |
26 | entr 7587 | . . . . . . . . . . 11 | |
27 | 24, 25, 26 | syl2anc 661 | . . . . . . . . . 10 |
28 | vex 3112 | . . . . . . . . . . . 12 | |
29 | f1oen3g 7551 | . . . . . . . . . . . 12 | |
30 | 28, 29 | mpan 670 | . . . . . . . . . . 11 |
31 | 30 | adantr 465 | . . . . . . . . . 10 |
32 | entr 7587 | . . . . . . . . . 10 | |
33 | 27, 31, 32 | syl2anc 661 | . . . . . . . . 9 |
34 | fin4i 8699 | . . . . . . . . 9 | |
35 | 20, 33, 34 | syl2anc 661 | . . . . . . . 8 |
36 | 35 | ex 434 | . . . . . . 7 |
37 | 36 | exlimdv 1724 | . . . . . 6 |
38 | 37 | con2d 115 | . . . . 5 |
39 | 38 | exlimiv 1722 | . . . 4 |
40 | 2, 39 | sylbi 195 | . . 3 |
41 | relen 7541 | . . . . 5 | |
42 | 41 | brrelexi 5045 | . . . 4 |
43 | isfin4 8698 | . . . 4 | |
44 | 42, 43 | syl 16 | . . 3 |
45 | 40, 44 | sylibrd 234 | . 2 |
46 | 1, 45 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
E. wex 1612 e. wcel 1818 cvv 3109
C_ wss 3475 C. wpss 3476 class class class wbr 4452
dom cdm 5004 ran crn 5005 " cima 5007
-1-1-> wf1 5590
-1-1-onto-> wf1o 5592
cen 7533 cfin4 8681 |
This theorem is referenced by: domfin4 8712 isfin4-3 8716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-er 7330 df-en 7537 df-fin4 8688 |
Copyright terms: Public domain | W3C validator |