![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > find | Unicode version |
Description: The Principle of Finite Induction (mathematical induction). Corollary 7.31 of [TakeutiZaring] p. 43. The simpler hypothesis shown here was suggested in an email from "Colin" on 1-Oct-2001. The hypothesis states that is a set of natural numbers, zero belongs to , and given any member of the member's successor also belongs to . The conclusion is that every natural number is in . (Contributed by NM, 22-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
find.1 |
Ref | Expression |
---|---|
find |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | find.1 | . . 3 | |
2 | 1 | simp1i 1005 | . 2 |
3 | 3simpc 995 | . . . . 5 | |
4 | 1, 3 | ax-mp 5 | . . . 4 |
5 | df-ral 2812 | . . . . . 6 | |
6 | alral 2822 | . . . . . 6 | |
7 | 5, 6 | sylbi 195 | . . . . 5 |
8 | 7 | anim2i 569 | . . . 4 |
9 | 4, 8 | ax-mp 5 | . . 3 |
10 | peano5 6723 | . . 3 | |
11 | 9, 10 | ax-mp 5 | . 2 |
12 | 2, 11 | eqssi 3519 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 A. wal 1393 = wceq 1395
e. wcel 1818 A. wral 2807 C_ wss 3475
c0 3784 suc csuc 4885 com 6700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-om 6701 |
Copyright terms: Public domain | W3C validator |