![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > findcard2d | Unicode version |
Description: Deduction version of findcard2 7780. (Contributed by SO, 16-Jul-2018.) |
Ref | Expression |
---|---|
findcard2d.ch | |
findcard2d.th | |
findcard2d.ta | |
findcard2d.et | |
findcard2d.z | |
findcard2d.i | |
findcard2d.a |
Ref | Expression |
---|---|
findcard2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3522 | . 2 | |
2 | findcard2d.a | . . . 4 | |
3 | 2 | adantr 465 | . . 3 |
4 | sseq1 3524 | . . . . . 6 | |
5 | 4 | anbi2d 703 | . . . . 5 |
6 | findcard2d.ch | . . . . 5 | |
7 | 5, 6 | imbi12d 320 | . . . 4 |
8 | sseq1 3524 | . . . . . 6 | |
9 | 8 | anbi2d 703 | . . . . 5 |
10 | findcard2d.th | . . . . 5 | |
11 | 9, 10 | imbi12d 320 | . . . 4 |
12 | sseq1 3524 | . . . . . 6 | |
13 | 12 | anbi2d 703 | . . . . 5 |
14 | findcard2d.ta | . . . . 5 | |
15 | 13, 14 | imbi12d 320 | . . . 4 |
16 | sseq1 3524 | . . . . . 6 | |
17 | 16 | anbi2d 703 | . . . . 5 |
18 | findcard2d.et | . . . . 5 | |
19 | 17, 18 | imbi12d 320 | . . . 4 |
20 | findcard2d.z | . . . . 5 | |
21 | 20 | adantr 465 | . . . 4 |
22 | simprl 756 | . . . . . . . 8 | |
23 | simprr 757 | . . . . . . . . 9 | |
24 | 23 | unssad 3680 | . . . . . . . 8 |
25 | 22, 24 | jca 532 | . . . . . . 7 |
26 | id 22 | . . . . . . . . . . 11 | |
27 | ssnid 4058 | . . . . . . . . . . . 12 | |
28 | elun2 3671 | . . . . . . . . . . . 12 | |
29 | 27, 28 | mp1i 12 | . . . . . . . . . . 11 |
30 | 26, 29 | sseldd 3504 | . . . . . . . . . 10 |
31 | 30 | ad2antll 728 | . . . . . . . . 9 |
32 | simplr 755 | . . . . . . . . 9 | |
33 | 31, 32 | eldifd 3486 | . . . . . . . 8 |
34 | findcard2d.i | . . . . . . . 8 | |
35 | 22, 24, 33, 34 | syl12anc 1226 | . . . . . . 7 |
36 | 25, 35 | embantd 54 | . . . . . 6 |
37 | 36 | ex 434 | . . . . 5 |
38 | 37 | com23 78 | . . . 4 |
39 | 7, 11, 15, 19, 21, 38 | findcard2s 7781 | . . 3 |
40 | 3, 39 | mpcom 36 | . 2 |
41 | 1, 40 | mpan2 671 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 \ cdif 3472 u. cun 3473
C_ wss 3475 c0 3784 { csn 4029 cfn 7536 |
This theorem is referenced by: maducoeval2 19142 madugsum 19145 fprodexp 31600 fprodabs2 31602 mccl 31606 fprodcncf 31704 dvnprodlem3 31745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-1o 7149 df-er 7330 df-en 7537 df-fin 7540 |
Copyright terms: Public domain | W3C validator |