![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fineqv | Unicode version |
Description: If the Axiom of Infinity is denied, then all sets are finite (which implies the Axiom of Choice). (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 3-Jan-2015.) |
Ref | Expression |
---|---|
fineqv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3523 | . . . 4 | |
2 | 1 | a1i 11 | . . 3 |
3 | vex 3112 | . . . . . . . 8 | |
4 | fineqvlem 7754 | . . . . . . . 8 | |
5 | 3, 4 | mpan 670 | . . . . . . 7 |
6 | reldom 7542 | . . . . . . . 8 | |
7 | 6 | brrelexi 5045 | . . . . . . 7 |
8 | 5, 7 | syl 16 | . . . . . 6 |
9 | 8 | con1i 129 | . . . . 5 |
10 | 9 | a1d 25 | . . . 4 |
11 | 10 | ssrdv 3509 | . . 3 |
12 | 2, 11 | eqssd 3520 | . 2 |
13 | ominf 7752 | . . 3 | |
14 | eleq2 2530 | . . 3 | |
15 | 13, 14 | mtbii 302 | . 2 |
16 | 12, 15 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 <-> wb 184
= wceq 1395 e. wcel 1818 cvv 3109
C_ wss 3475 ~P cpw 4012 class class class wbr 4452
com 6700
cdom 7534 cfn 7536 |
This theorem is referenced by: npomex 9395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 |
Copyright terms: Public domain | W3C validator |