![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fineqvlem | Unicode version |
Description: Lemma for fineqv 7755. (Contributed by Mario Carneiro, 20-Jan-2013.) (Proof shortened by Stefan O'Rear, 3-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
fineqvlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 4636 | . . . 4 | |
2 | 1 | adantr 465 | . . 3 |
3 | pwexg 4636 | . . 3 | |
4 | 2, 3 | syl 16 | . 2 |
5 | ssrab2 3584 | . . . . 5 | |
6 | elpw2g 4615 | . . . . . 6 | |
7 | 2, 6 | syl 16 | . . . . 5 |
8 | 5, 7 | mpbiri 233 | . . . 4 |
9 | 8 | a1d 25 | . . 3 |
10 | isinf 7753 | . . . . . . . . 9 | |
11 | 10 | r19.21bi 2826 | . . . . . . . 8 |
12 | 11 | ad2ant2lr 747 | . . . . . . 7 |
13 | selpw 4019 | . . . . . . . . . . 11 | |
14 | 13 | biimpri 206 | . . . . . . . . . 10 |
15 | 14 | anim1i 568 | . . . . . . . . 9 |
16 | breq1 4455 | . . . . . . . . . 10 | |
17 | 16 | elrab 3257 | . . . . . . . . 9 |
18 | 15, 17 | sylibr 212 | . . . . . . . 8 |
19 | 18 | eximi 1656 | . . . . . . 7 |
20 | 12, 19 | syl 16 | . . . . . 6 |
21 | eleq2 2530 | . . . . . . . . 9 | |
22 | 21 | biimpcd 224 | . . . . . . . 8 |
23 | 22 | adantl 466 | . . . . . . 7 |
24 | 17 | simprbi 464 | . . . . . . . . . 10 |
25 | breq1 4455 | . . . . . . . . . . . 12 | |
26 | 25 | elrab 3257 | . . . . . . . . . . 11 |
27 | 26 | simprbi 464 | . . . . . . . . . 10 |
28 | ensym 7584 | . . . . . . . . . . 11 | |
29 | entr 7587 | . . . . . . . . . . 11 | |
30 | 28, 29 | sylan 471 | . . . . . . . . . 10 |
31 | 24, 27, 30 | syl2an 477 | . . . . . . . . 9 |
32 | 31 | ex 434 | . . . . . . . 8 |
33 | 32 | adantl 466 | . . . . . . 7 |
34 | nneneq 7720 | . . . . . . . . 9 | |
35 | 34 | biimpd 207 | . . . . . . . 8 |
36 | 35 | ad2antlr 726 | . . . . . . 7 |
37 | 23, 33, 36 | 3syld 55 | . . . . . 6 |
38 | 20, 37 | exlimddv 1726 | . . . . 5 |
39 | breq2 4456 | . . . . . 6 | |
40 | 39 | rabbidv 3101 | . . . . 5 |
41 | 38, 40 | impbid1 203 | . . . 4 |
42 | 41 | ex 434 | . . 3 |
43 | 9, 42 | dom2d 7576 | . 2 |
44 | 4, 43 | mpd 15 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
E. wex 1612 e. wcel 1818 { crab 2811
cvv 3109
C_ wss 3475 ~P cpw 4012 class class class wbr 4452
com 6700
cen 7533 cdom 7534 cfn 7536 |
This theorem is referenced by: fineqv 7755 isfin1-2 8786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-er 7330 df-en 7537 df-dom 7538 df-fin 7540 |
Copyright terms: Public domain | W3C validator |