![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fipreima | Unicode version |
Description: Given a finite subset of the range of a function, there exists a finite subset of the domain whose image is . (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
fipreima |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 998 | . . 3 | |
2 | dfss3 3493 | . . . . . 6 | |
3 | fvelrnb 5920 | . . . . . . 7 | |
4 | 3 | ralbidv 2896 | . . . . . 6 |
5 | 2, 4 | syl5bb 257 | . . . . 5 |
6 | 5 | biimpa 484 | . . . 4 |
7 | 6 | 3adant3 1016 | . . 3 |
8 | fveq2 5871 | . . . . 5 | |
9 | 8 | eqeq1d 2459 | . . . 4 |
10 | 9 | ac6sfi 7784 | . . 3 |
11 | 1, 7, 10 | syl2anc 661 | . 2 |
12 | imassrn 5353 | . . . . . . 7 | |
13 | frn 5742 | . . . . . . 7 | |
14 | 12, 13 | syl5ss 3514 | . . . . . 6 |
15 | vex 3112 | . . . . . . . 8 | |
16 | imaexg 6737 | . . . . . . . 8 | |
17 | 15, 16 | ax-mp 5 | . . . . . . 7 |
18 | 17 | elpw 4018 | . . . . . 6 |
19 | 14, 18 | sylibr 212 | . . . . 5 |
20 | 19 | ad2antrl 727 | . . . 4 |
21 | ffun 5738 | . . . . . 6 | |
22 | 21 | ad2antrl 727 | . . . . 5 |
23 | simpl3 1001 | . . . . 5 | |
24 | imafi 7833 | . . . . 5 | |
25 | 22, 23, 24 | syl2anc 661 | . . . 4 |
26 | 20, 25 | elind 3687 | . . 3 |
27 | fvco3 5950 | . . . . . . . . . . 11 | |
28 | fvresi 6097 | . . . . . . . . . . . 12 | |
29 | 28 | adantl 466 | . . . . . . . . . . 11 |
30 | 27, 29 | eqeq12d 2479 | . . . . . . . . . 10 |
31 | 30 | ralbidva 2893 | . . . . . . . . 9 |
32 | 31 | biimprd 223 | . . . . . . . 8 |
33 | 32 | adantl 466 | . . . . . . 7 |
34 | 33 | impr 619 | . . . . . 6 |
35 | simpl1 999 | . . . . . . . 8 | |
36 | ffn 5736 | . . . . . . . . 9 | |
37 | 36 | ad2antrl 727 | . . . . . . . 8 |
38 | 13 | ad2antrl 727 | . . . . . . . 8 |
39 | fnco 5694 | . . . . . . . 8 | |
40 | 35, 37, 38, 39 | syl3anc 1228 | . . . . . . 7 |
41 | fnresi 5703 | . . . . . . 7 | |
42 | eqfnfv 5981 | . . . . . . 7 | |
43 | 40, 41, 42 | sylancl 662 | . . . . . 6 |
44 | 34, 43 | mpbird 232 | . . . . 5 |
45 | 44 | imaeq1d 5341 | . . . 4 |
46 | imaco 5517 | . . . 4 | |
47 | ssid 3522 | . . . . 5 | |
48 | resiima 5356 | . . . . 5 | |
49 | 47, 48 | ax-mp 5 | . . . 4 |
50 | 45, 46, 49 | 3eqtr3g 2521 | . . 3 |
51 | imaeq2 5338 | . . . . 5 | |
52 | 51 | eqeq1d 2459 | . . . 4 |
53 | 52 | rspcev 3210 | . . 3 |
54 | 26, 50, 53 | syl2anc 661 | . 2 |
55 | 11, 54 | exlimddv 1726 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
E. wex 1612 e. wcel 1818 A. wral 2807
E. wrex 2808 cvv 3109
i^i cin 3474 C_ wss 3475 ~P cpw 4012
cid 4795
ran crn 5005 |` cres 5006 " cima 5007
o. ccom 5008 Fun wfun 5587 Fn wfn 5588
--> wf 5589 ` cfv 5593 cfn 7536 |
This theorem is referenced by: fodomfi2 8462 cmpfi 19908 elrfirn 30627 lmhmfgsplit 31032 hbtlem6 31078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-1o 7149 df-er 7330 df-en 7537 df-dom 7538 df-fin 7540 |
Copyright terms: Public domain | W3C validator |