![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fissuni | Unicode version |
Description: A finite subset of a union is covered by finitely many elements. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
Ref | Expression |
---|---|
fissuni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 461 | . . 3 | |
2 | dfss3 3493 | . . . . 5 | |
3 | eluni2 4253 | . . . . . 6 | |
4 | 3 | ralbii 2888 | . . . . 5 |
5 | 2, 4 | sylbb 197 | . . . 4 |
6 | 5 | adantr 465 | . . 3 |
7 | eleq2 2530 | . . . 4 | |
8 | 7 | ac6sfi 7784 | . . 3 |
9 | 1, 6, 8 | syl2anc 661 | . 2 |
10 | imassrn 5353 | . . . . . . 7 | |
11 | frn 5742 | . . . . . . 7 | |
12 | 10, 11 | syl5ss 3514 | . . . . . 6 |
13 | vex 3112 | . . . . . . . 8 | |
14 | imaexg 6737 | . . . . . . . 8 | |
15 | 13, 14 | ax-mp 5 | . . . . . . 7 |
16 | 15 | elpw 4018 | . . . . . 6 |
17 | 12, 16 | sylibr 212 | . . . . 5 |
18 | 17 | ad2antrl 727 | . . . 4 |
19 | ffun 5738 | . . . . . 6 | |
20 | 19 | ad2antrl 727 | . . . . 5 |
21 | simplr 755 | . . . . 5 | |
22 | imafi 7833 | . . . . 5 | |
23 | 20, 21, 22 | syl2anc 661 | . . . 4 |
24 | 18, 23 | elind 3687 | . . 3 |
25 | ffn 5736 | . . . . . . . . . . 11 | |
26 | 25 | adantr 465 | . . . . . . . . . 10 |
27 | ssid 3522 | . . . . . . . . . . 11 | |
28 | 27 | a1i 11 | . . . . . . . . . 10 |
29 | simpr 461 | . . . . . . . . . 10 | |
30 | fnfvima 6150 | . . . . . . . . . 10 | |
31 | 26, 28, 29, 30 | syl3anc 1228 | . . . . . . . . 9 |
32 | elssuni 4279 | . . . . . . . . 9 | |
33 | 31, 32 | syl 16 | . . . . . . . 8 |
34 | 33 | sseld 3502 | . . . . . . 7 |
35 | 34 | ralimdva 2865 | . . . . . 6 |
36 | 35 | imp 429 | . . . . 5 |
37 | dfss3 3493 | . . . . 5 | |
38 | 36, 37 | sylibr 212 | . . . 4 |
39 | 38 | adantl 466 | . . 3 |
40 | unieq 4257 | . . . . 5 | |
41 | 40 | sseq2d 3531 | . . . 4 |
42 | 41 | rspcev 3210 | . . 3 |
43 | 24, 39, 42 | syl2anc 661 | . 2 |
44 | 9, 43 | exlimddv 1726 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 E. wex 1612 e. wcel 1818
A. wral 2807 E. wrex 2808 cvv 3109
i^i cin 3474 C_ wss 3475 ~P cpw 4012
U. cuni 4249 ran crn 5005 " cima 5007
Fun wfun 5587
Fn wfn 5588 --> wf 5589 ` cfv 5593
cfn 7536 |
This theorem is referenced by: isacs3lem 15796 isnacs3 30642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-1o 7149 df-er 7330 df-en 7537 df-dom 7538 df-fin 7540 |
Copyright terms: Public domain | W3C validator |