![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fldiv | Unicode version |
Description: Cancellation of the embedded floor of a real divided by an integer. (Contributed by NM, 16-Aug-2008.) |
Ref | Expression |
---|---|
fldiv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2457 | . . . . . . . . 9 | |
2 | eqid 2457 | . . . . . . . . 9 | |
3 | 1, 2 | intfrac2 11985 | . . . . . . . 8 |
4 | 3 | simp3d 1010 | . . . . . . 7 |
5 | 4 | adantr 465 | . . . . . 6 |
6 | 5 | oveq1d 6311 | . . . . 5 |
7 | reflcl 11933 | . . . . . . . 8 | |
8 | 7 | recnd 9643 | . . . . . . 7 |
9 | 8 | adantr 465 | . . . . . 6 |
10 | resubcl 9906 | . . . . . . . . 9 | |
11 | 7, 10 | mpdan 668 | . . . . . . . 8 |
12 | 11 | recnd 9643 | . . . . . . 7 |
13 | 12 | adantr 465 | . . . . . 6 |
14 | nncn 10569 | . . . . . . . 8 | |
15 | nnne0 10593 | . . . . . . . 8 | |
16 | 14, 15 | jca 532 | . . . . . . 7 |
17 | 16 | adantl 466 | . . . . . 6 |
18 | divdir 10255 | . . . . . 6 | |
19 | 9, 13, 17, 18 | syl3anc 1228 | . . . . 5 |
20 | 6, 19 | eqtrd 2498 | . . . 4 |
21 | flcl 11932 | . . . . . 6 | |
22 | eqid 2457 | . . . . . . . 8 | |
23 | eqid 2457 | . . . . . . . 8 | |
24 | 22, 23 | intfracq 11986 | . . . . . . 7 |
25 | 24 | simp3d 1010 | . . . . . 6 |
26 | 21, 25 | sylan 471 | . . . . 5 |
27 | 26 | oveq1d 6311 | . . . 4 |
28 | 7 | adantr 465 | . . . . . . . 8 |
29 | nnre 10568 | . . . . . . . . 9 | |
30 | 29 | adantl 466 | . . . . . . . 8 |
31 | 15 | adantl 466 | . . . . . . . 8 |
32 | 28, 30, 31 | redivcld 10397 | . . . . . . 7 |
33 | reflcl 11933 | . . . . . . 7 | |
34 | 32, 33 | syl 16 | . . . . . 6 |
35 | 34 | recnd 9643 | . . . . 5 |
36 | 32, 34 | resubcld 10012 | . . . . . 6 |
37 | 36 | recnd 9643 | . . . . 5 |
38 | 11 | adantr 465 | . . . . . . 7 |
39 | 38, 30, 31 | redivcld 10397 | . . . . . 6 |
40 | 39 | recnd 9643 | . . . . 5 |
41 | 35, 37, 40 | addassd 9639 | . . . 4 |
42 | 20, 27, 41 | 3eqtrd 2502 | . . 3 |
43 | 42 | fveq2d 5875 | . 2 |
44 | 24 | simp1d 1008 | . . . . 5 |
45 | 21, 44 | sylan 471 | . . . 4 |
46 | fracge0 11941 | . . . . . 6 | |
47 | 11, 46 | jca 532 | . . . . 5 |
48 | nngt0 10590 | . . . . . 6 | |
49 | 29, 48 | jca 532 | . . . . 5 |
50 | divge0 10436 | . . . . 5 | |
51 | 47, 49, 50 | syl2an 477 | . . . 4 |
52 | 36, 39, 45, 51 | addge0d 10153 | . . 3 |
53 | peano2rem 9909 | . . . . . . . . . 10 | |
54 | 29, 53 | syl 16 | . . . . . . . . 9 |
55 | 54, 29, 15 | redivcld 10397 | . . . . . . . 8 |
56 | nnrecre 10597 | . . . . . . . 8 | |
57 | 55, 56 | jca 532 | . . . . . . 7 |
58 | 57 | adantl 466 | . . . . . 6 |
59 | 36, 39, 58 | jca31 534 | . . . . 5 |
60 | 24 | simp2d 1009 | . . . . . . 7 |
61 | 21, 60 | sylan 471 | . . . . . 6 |
62 | fraclt1 11939 | . . . . . . . 8 | |
63 | 62 | adantr 465 | . . . . . . 7 |
64 | 1re 9616 | . . . . . . . . 9 | |
65 | ltdiv1 10431 | . . . . . . . . 9 | |
66 | 64, 65 | mp3an2 1312 | . . . . . . . 8 |
67 | 11, 49, 66 | syl2an 477 | . . . . . . 7 |
68 | 63, 67 | mpbid 210 | . . . . . 6 |
69 | 61, 68 | jca 532 | . . . . 5 |
70 | leltadd 10061 | . . . . 5 | |
71 | 59, 69, 70 | sylc 60 | . . . 4 |
72 | ax-1cn 9571 | . . . . . . . 8 | |
73 | npcan 9852 | . . . . . . . 8 | |
74 | 14, 72, 73 | sylancl 662 | . . . . . . 7 |
75 | 74 | oveq1d 6311 | . . . . . 6 |
76 | 54 | recnd 9643 | . . . . . . 7 |
77 | divdir 10255 | . . . . . . . 8 | |
78 | 72, 77 | mp3an2 1312 | . . . . . . 7 |
79 | 76, 14, 15, 78 | syl12anc 1226 | . . . . . 6 |
80 | 14, 15 | dividd 10343 | . . . . . 6 |
81 | 75, 79, 80 | 3eqtr3d 2506 | . . . . 5 |
82 | 81 | adantl 466 | . . . 4 |
83 | 71, 82 | breqtrd 4476 | . . 3 |
84 | 32 | flcld 11935 | . . . 4 |
85 | 36, 39 | readdcld 9644 | . . . 4 |
86 | flbi2 11953 | . . . 4 | |
87 | 84, 85, 86 | syl2anc 661 | . . 3 |
88 | 52, 83, 87 | mpbir2and 922 | . 2 |
89 | 43, 88 | eqtr2d 2499 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 class class class wbr 4452
` cfv 5593 (class class class)co 6296
cc 9511 cr 9512 0 cc0 9513 1 c1 9514
caddc 9516 clt 9649 cle 9650 cmin 9828 cdiv 10231 cn 10561 cz 10889 cfl 11927 |
This theorem is referenced by: fldiv2 11988 modmulnn 12013 digit2 12299 bitsp1 14081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-fl 11929 |
Copyright terms: Public domain | W3C validator |