![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > fleqceilz | Unicode version |
Description: A real number is an integer iff its floor equals its ceiling. (Contributed by AV, 30-Nov-2018.) |
Ref | Expression |
---|---|
fleqceilz |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flid 11945 | . . 3 | |
2 | ceilid 11978 | . . 3 | |
3 | 1, 2 | eqtr4d 2501 | . 2 |
4 | eqeq1 2461 | . . . . . 6 | |
5 | 4 | adantr 465 | . . . . 5 |
6 | ceilidz 11979 | . . . . . . . 8 | |
7 | eqcom 2466 | . . . . . . . 8 | |
8 | 6, 7 | syl6bb 261 | . . . . . . 7 |
9 | 8 | biimprd 223 | . . . . . 6 |
10 | 9 | adantl 466 | . . . . 5 |
11 | 5, 10 | sylbid 215 | . . . 4 |
12 | 11 | ex 434 | . . 3 |
13 | flle 11936 | . . . 4 | |
14 | df-ne 2654 | . . . . 5 | |
15 | necom 2726 | . . . . . 6 | |
16 | reflcl 11933 | . . . . . . . . . 10 | |
17 | id 22 | . . . . . . . . . 10 | |
18 | 16, 17 | ltlend 9751 | . . . . . . . . 9 |
19 | breq1 4455 | . . . . . . . . . . . . 13 | |
20 | 19 | adantl 466 | . . . . . . . . . . . 12 |
21 | ceilge 11973 | . . . . . . . . . . . . . 14 | |
22 | ceilcl 11971 | . . . . . . . . . . . . . . . . 17 | |
23 | 22 | zred 10994 | . . . . . . . . . . . . . . . 16 |
24 | 17, 23 | lenltd 9752 | . . . . . . . . . . . . . . 15 |
25 | pm2.21 108 | . . . . . . . . . . . . . . 15 | |
26 | 24, 25 | syl6bi 228 | . . . . . . . . . . . . . 14 |
27 | 21, 26 | mpd 15 | . . . . . . . . . . . . 13 |
28 | 27 | adantr 465 | . . . . . . . . . . . 12 |
29 | 20, 28 | sylbid 215 | . . . . . . . . . . 11 |
30 | 29 | ex 434 | . . . . . . . . . 10 |
31 | 30 | com23 78 | . . . . . . . . 9 |
32 | 18, 31 | sylbird 235 | . . . . . . . 8 |
33 | 32 | expd 436 | . . . . . . 7 |
34 | 33 | com3r 79 | . . . . . 6 |
35 | 15, 34 | sylbi 195 | . . . . 5 |
36 | 14, 35 | sylbir 213 | . . . 4 |
37 | 13, 36 | mpdi 42 | . . 3 |
38 | 12, 37 | pm2.61i 164 | . 2 |
39 | 3, 38 | impbid2 204 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 =/= wne 2652 class class class wbr 4452
` cfv 5593 cr 9512 clt 9649 cle 9650 cz 10889 cfl 11927 cceil 11928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-fl 11929 df-ceil 11930 |
Copyright terms: Public domain | W3C validator |