![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > flflp1 | Unicode version |
Description: Move floor function between strict and non-strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.) |
Ref | Expression |
---|---|
flflp1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flltp1 11937 | . . . . . 6 | |
2 | 1 | ad3antrrr 729 | . . . . 5 |
3 | flval 11931 | . . . . . . . 8 | |
4 | 3 | ad3antlr 730 | . . . . . . 7 |
5 | simplr 755 | . . . . . . . 8 | |
6 | 1 | adantr 465 | . . . . . . . . . . 11 |
7 | reflcl 11933 | . . . . . . . . . . . . . . 15 | |
8 | peano2re 9774 | . . . . . . . . . . . . . . 15 | |
9 | 7, 8 | syl 16 | . . . . . . . . . . . . . 14 |
10 | 9 | adantl 466 | . . . . . . . . . . . . 13 |
11 | lttr 9682 | . . . . . . . . . . . . 13 | |
12 | 10, 11 | mpd3an3 1325 | . . . . . . . . . . . 12 |
13 | 12 | ancoms 453 | . . . . . . . . . . 11 |
14 | 6, 13 | mpan2d 674 | . . . . . . . . . 10 |
15 | 14 | imp 429 | . . . . . . . . 9 |
16 | 15 | adantlr 714 | . . . . . . . 8 |
17 | flcl 11932 | . . . . . . . . . 10 | |
18 | rebtwnz 11210 | . . . . . . . . . 10 | |
19 | breq1 4455 | . . . . . . . . . . . 12 | |
20 | oveq1 6303 | . . . . . . . . . . . . 13 | |
21 | 20 | breq2d 4464 | . . . . . . . . . . . 12 |
22 | 19, 21 | anbi12d 710 | . . . . . . . . . . 11 |
23 | 22 | riota2 6280 | . . . . . . . . . 10 |
24 | 17, 18, 23 | syl2an 477 | . . . . . . . . 9 |
25 | 24 | ad2antrr 725 | . . . . . . . 8 |
26 | 5, 16, 25 | mpbi2and 921 | . . . . . . 7 |
27 | 4, 26 | eqtrd 2498 | . . . . . 6 |
28 | 27 | oveq1d 6311 | . . . . 5 |
29 | 2, 28 | breqtrrd 4478 | . . . 4 |
30 | 29 | ex 434 | . . 3 |
31 | lenlt 9684 | . . . . 5 | |
32 | flltp1 11937 | . . . . . . 7 | |
33 | 32 | adantl 466 | . . . . . 6 |
34 | reflcl 11933 | . . . . . . . . 9 | |
35 | peano2re 9774 | . . . . . . . . 9 | |
36 | 34, 35 | syl 16 | . . . . . . . 8 |
37 | 36 | adantl 466 | . . . . . . 7 |
38 | lelttr 9696 | . . . . . . 7 | |
39 | 37, 38 | mpd3an3 1325 | . . . . . 6 |
40 | 33, 39 | mpan2d 674 | . . . . 5 |
41 | 31, 40 | sylbird 235 | . . . 4 |
42 | 41 | adantr 465 | . . 3 |
43 | 30, 42 | pm2.61d 158 | . 2 |
44 | flval 11931 | . . . . . . 7 | |
45 | 44 | ad3antrrr 729 | . . . . . 6 |
46 | 34 | ad2antlr 726 | . . . . . . . . 9 |
47 | simpll 753 | . . . . . . . . 9 | |
48 | simplr 755 | . . . . . . . . . 10 | |
49 | flle 11936 | . . . . . . . . . . 11 | |
50 | 49 | ad2antlr 726 | . . . . . . . . . 10 |
51 | simpr 461 | . . . . . . . . . 10 | |
52 | 46, 48, 47, 50, 51 | lelttrd 9761 | . . . . . . . . 9 |
53 | 46, 47, 52 | ltled 9754 | . . . . . . . 8 |
54 | 53 | adantlr 714 | . . . . . . 7 |
55 | simplr 755 | . . . . . . 7 | |
56 | flcl 11932 | . . . . . . . . 9 | |
57 | rebtwnz 11210 | . . . . . . . . 9 | |
58 | breq1 4455 | . . . . . . . . . . 11 | |
59 | oveq1 6303 | . . . . . . . . . . . 12 | |
60 | 59 | breq2d 4464 | . . . . . . . . . . 11 |
61 | 58, 60 | anbi12d 710 | . . . . . . . . . 10 |
62 | 61 | riota2 6280 | . . . . . . . . 9 |
63 | 56, 57, 62 | syl2anr 478 | . . . . . . . 8 |
64 | 63 | ad2antrr 725 | . . . . . . 7 |
65 | 54, 55, 64 | mpbi2and 921 | . . . . . 6 |
66 | 45, 65 | eqtrd 2498 | . . . . 5 |
67 | 49 | ad3antlr 730 | . . . . 5 |
68 | 66, 67 | eqbrtrd 4472 | . . . 4 |
69 | 68 | ex 434 | . . 3 |
70 | flle 11936 | . . . . . . 7 | |
71 | 70 | adantr 465 | . . . . . 6 |
72 | 7 | adantr 465 | . . . . . . 7 |
73 | letr 9699 | . . . . . . . 8 | |
74 | 73 | 3coml 1203 | . . . . . . 7 |
75 | 72, 74 | mpd3an3 1325 | . . . . . 6 |
76 | 71, 75 | mpand 675 | . . . . 5 |
77 | 31, 76 | sylbird 235 | . . . 4 |
78 | 77 | adantr 465 | . . 3 |
79 | 69, 78 | pm2.61d 158 | . 2 |
80 | 43, 79 | impbida 832 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 E! wreu 2809 class class class wbr 4452
` cfv 5593 iota_ crio 6256 (class class class)co 6296
cr 9512 1 c1 9514 caddc 9516 clt 9649 cle 9650 cz 10889 cfl 11927 |
This theorem is referenced by: itg2addnclem2 30067 hashnzfzclim 31227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-fl 11929 |
Copyright terms: Public domain | W3C validator |